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Mechanics

1 Introduction and basic concepts

In this section we summarise some basic concepts and methods with which the reader should
be familiar. These notes are intended as guidelines and the reader is advised to supplement
their studies by reading relevant sections from the many excellent standard texts available.
We recommend in particular:

Fundamentals of Physics by Halliday, Resnick & Walker

University Physics by Young & Freedman

There is also much material freely available on the internet. Background material for the
physical sciences is available (free of charge) in pdf format from the website

http://www.everythingscience.co.za/grade-12

Textbooks for grades 10 and 11, as well as textbooks for mathematics for grades 10–12, are
also available.

1.1 Introduction

Physics attempts to describe how and why our universe (including our immediate physical
environment) behaves as it does. For example it explains why the sky is blue and why rainbows
have colours. It also explains what keeps our moon in its orbit, and accounts for the thunder
and lightning that accompany a storm.

The laws of physics are remarkable for their scope, covering the behaviour both of sub-
atomic particles and distant stars far greater than our sun.

It is because physics is so fundamental that it is a required course for students majoring
in a wide variety of other subjects.

We hope you will come to see that physics is highly relevant both to you and your envi-
ronment.

In this course we will study the oldest branch of mechanics called classical mechanics. It
is used to describe the motion of objects much bigger than atoms moving at speeds much less
than the speed of light.
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1.2 Units

We shall use the SI (Système International) set of units. This has a number of base units,
three of which will be important in our study of Mechanics: the metre, the kilogram and the
second. Units must always be given except in the case of dimensionless quantities.

Physical quantity Name of S.I. unit Symbol

Length metre m
Mass kilogram kg
Time second s

Table 1: Several commonly used base units.

Units of quantities such as force and energy can be expressed as combinations of the base
units and are referred to as derived units. Table 2 lists some of the derived units that will
be encountered in this course.

Physical quantity Name of S.I. unit Base units Symbol

Force newton kgm s−2 N
Energy joule kgm2 s−2 J
Pressure pascal Nm−2 Pa

Table 2: Several commonly used derived units.

The value of a quantity is often very large or very small when expressed in base or derived
units. It is then convenient to express these quantities in terms of multiples of ten as given
by the prefixes summarised in Table 3.

Prefix Symbol Factor

Tera T 1012

Giga G 109

Mega M 106

Kilo k 103

Deci d 10−1

Centi c 10−2

Milli m 10−3

Micro µ 10−6

Nano n 10−9

Pico p 10−12

Femto f 10−15

Atto a 10−18

Table 3: Standard prefixes used to denote multiples of ten.
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Example 1: Conversion of inches and feet to SI units

There are 12 inches in one foot and one inch is 2.54 cm. Calculate the height of a person who
is 6 feet tall in SI units.

Solution:

6 feet = 6× 12 inches = 72 inches = 72× 2.54 cm = 183 cm = 1.83m.

Example 2: Conversion of km/hour to m s−1

Convert 60 kmh−1 to m s−1.

Solution:

60 kmh−1 =
60 km

1h
=

60× 103 m

1 s× 60 s× 60 s
= 16.7m s−1.

Example 3: Conversion of standard prefixes

Express 42 000 km in metres and 3.2× 10−8 kg in µg.

Solution:

42 000 km = 4.2× 104 km = 4.2× 104 × 103 m = 4.2× 107 m.
3.2× 10−8 kg = 3.2× 10−8 × 103 g = 3.2× 10−5 × 106 µg = 32 µg.

1.3 Scalar and vector quantities

1.3.1 The distinction between scalar and vector quantities

Scalars are quantities that have magnitude only. Scalars are completely specified by the
product of a positive or negative number and (usually) a unit. Examples of scalars are mass,
temperature, distance and speed. Vectors are quantities that have magnitude and direction.
The magnitude of a vector is positive. Examples of vectors are force, acceleration, displacement
and velocity. Note that a vector (e.g. velocity) changes if either its magnitude or its direction
changes.

There are various ways of indicating that a given symbol is to represent a vector quantity.
A force F could be written:

~F or
˜
F or F (i.e. heavy type or boldface).

In these notes vector quantities will be indicated using boldface symbols.

1.3.2 Addition of scalars

Scalars simply add arithmetically. For example, adding several masses:

5 kg + 10 kg + 2 kg = 17 kg.

1.3.3 Addition of vectors by construction

Vectors do not add arithmetically. One way of performing vector addition is with the aid of
diagrams. When representing vector quantities in diagrams, arrows are used. It is understood
that the length of the arrow is proportional to the magnitude of the vector and the
direction of the arrow indicates the direction of the vector.
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Example 4: Addition of vectors by construction

Suppose a car travels from point A in an easterly direction for 10 km to point B, and then
travels another 5 km in a direction 60° north of east to point C. Determine the total distance
travelled and the displacement of the car.

Solution:

The total distance travelled is 15 km, which is the sum of the distances travelled from A
to B and from B to C.

s1 = 10 km

s 2
=
5
km

60°

A B

C

To find the displacement, we first draw AB 10 units long representing the displacement in
the easterly direction. From the end point of AB, we draw BC 5 units long at 60° north of
east to represent the displacement in the north easterly direction. The total displacement
(or resultant) is then represented by AC. The magnitude of the displacement is the length
of AC whilst the direction is indicated by the arrow. Measurement shows that the length
of AC is 13.3 km and the direction is 19.1° north of east.

Any number of vectors may be added together in a similar way. Consider the vectors
shown in Figure 1a. To add these vectors, draw a scaled representation of any of the vectors
(here the vector pointing west was chosen — the starting point is labelled ‘P’ in Figure 1b).
Now take any of the other vectors and construct it from the endpoint of the previous vector.
Continue in this way until all the vectors have been constructed. The resultant is then the
vector drawn from the starting point to the end point of the last vector drawn (in this case
the vector pointing south — the point labelled ‘Q’ in Figure 1b).

1

1

1
2

1

1

2
1

Resultant

P

Q

(a) (b)

Figure 1: Adding several vectors by construction.

Note that, if in representing a number of vectors in a scale diagram the ‘finishing’ point
coincides with the ‘starting’ point, then the resultant is zero. In such a case, if the vectors
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are forces acting on a body, then the body will be in equilibrium (see also Section 3.5.2).

1.3.4 Components of a vector

Finding the resultant of a number of vectors by construction is neither accurate nor conve-
nient. In order to manipulate vectors algebraically, we need to introduce the concept of the
components of a vector. An arbitrary vector A is shown in Figure 2. The x and y axes are
drawn so that the origin coincides with the starting point of the vector A. (In this course
we will only consider vectors in two dimensions.) It is evident from Figure 2 that the vector
A may be obtained by adding the vectors Ax and Ay. Ax and Ay are known as the vector
components of A. The lengths of the components Ax and Ay are written Ax and Ay and
are called the scalar components of A. The scalar components Ax and Ay are positive if
they point along the positive x and y axes respectively, and negative if they point along the
negative x and y axes.

+x
Ax

+y

Ay

A

θ

Figure 2: A vector Aand its vector components Ax and Ay.

1.3.5 The resolution (or resolving) of vectors

If the magnitude and direction of a vector are known, we can find the components of the vector.
This process is known as resolving a vector into its components. If the magnitude of the
vector A in Figure 2 is A, and the direction of A is θ then

Ax = A cos θ , (1)

and

Ay = A sin θ . (2)

If the components Ax and Ay of a vector A are known, it is possible to find the magnitude
and direction of A. The magnitude may be found using the theorem of Pythagoras:

A =
√
A2

x + A2
y . (3)

The direction is found using the tangent, thus

θ = tan−1

(
Ay

Ax

)
. (4)
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The values of Ax and Ay depend on the orientation of the axes (and indeed on the chosen
coordinate system). The choice of orientation is purely a matter of convenience. In problems
where it is necessary to resolve a vector into its components, a suitable choice of orientation
can lead to substantial simplification of the solution. An important example is an object
(weight W) at rest on an inclined plane (see Section 3.5.4)

1.3.6 The addition of vectors by means of components

x

y

A

B

R

α

β

Ax Bx

Ay

By

Figure 3: Addition of vectors using the components of the vectors.

Consider two vectors A and B (see Figure 3), we wish to find the resultant R. It should
be obvious from figure 3 that the scalar components of R are given by

Rx = Ax + Bx

and

Ry = Ay + By,

where Ax, Ay, and Bx, By are the scalar components of A and B respectively.

The method of adding (or subtracting) vectors by adding (or subtracting) the components
in this way may be extended to any number of vectors. We illustrate this by means of an
example.

Example 5: Addition of vectors by adding components

Find the resultant of the three vectors in the drawing below. The vectors A and B are
perpendicular to each other, and the magnitudes of A, B and C are 10, 20 and 15 units
respectively.
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A

B

C

240°

Solution:

Using Equation (1) and (2) we first find the x and y components of each vector. We place
the origin of the coordinate system at the intersection of the vectors, with the positive x
axis along the vector B. Thus

Ax = 0 and Ay = 10, Bx = 20 and By = 0,

and

Cx = 15 cos 240° = −7.5 and Cy = 15 sin 240° = −13.

To find the resultant R we first calculate the scalar components of R:

Rx = Ax + Bx + Cx = 0 + 20− 7.5 = 12.5 and
Ry = Ay +By + Cy = 10 + 0− 13 = −3.

Using Equation (3) the magnitude of R is therefore

R =
√
R2

x +R2
y =

√
12.52 + (−3)2 = 12.85

The direction of R is obtained from Equation (4):

θ = tan−1

(
−3

12.5

)
= −13.5°.

1.3.7 The parallelogram of vectors

A

B

θ

(a)

A

B R

φ

(b)

Figure 4: Parallelogram of vectors.
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Consider two vectors A and B at an angle θ to each other as in Figure 4a. If we construct
lines parallel and equal to A and B, we obtain a parallelogram with the resultant R as the
diagonal (Figure 4b). The magnitudes of A and B and R are related by

R2 = A2 +B2 − 2AB cosφ, (5)

where φ = 180° − θ.

2 Kinematics

Kinematics is the study of the motion of bodies without reference to any forces. Forces will
be considered in Section 3.

To describe the motion of an object, we need to specify where the object is with respect
to some reference point. A frame of reference combines a reference point with a set of
directions. The Cartesian coordinate system is a frame of reference, it consists of an origin
and a set of mutually perpendicular directions, familiar to us as the x, y and z axes.

2.1 Definitions

Displacement is the change in position of an object in a specified time interval.

Displacement is a vector quantity that has
both magnitude and direction. In the diagram
alongside, an object is displaced from A to B. The
displacement is independent of the choice of path,
thus the paths indicated by (1) and (2) correspond
to the same displacement even though the distance
covered in each case is clearly different.

A B
∆s

(1)

(2)

Note that the distance an object moves is always positive, whereas the displacement ∆s
can be either positive or negative.

We now consider a particle which starts from the origin O and moves in the xy plane along
the dotted path shown in the figure below.

y

x

s1

s2

∆s

O

A

B

At time t1 the particle it is at A and at t2 it is at B. In going from A to B, the particle’s
displacement is ∆s = s2 − s1. Let ∆t = t2 − t1. This is the time taken to go from A to B.

The speed of an object is a measure of how fast it is moving.

Average speed is the total distance travelled divided by the time taken.
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average speed =
distance AB along the dotted line

∆t
. (6)

The SI unit of speed is the metre per second (m s−1).
Uniform speed is achieved when equal distances are covered in equal times. When the

distance travelled is plotted against the time taken, uniform speed produces a straight line
graph, with the slope of the graph equal to the speed (see Figure 5).

time

distance

(a)

time

distance

(b)

Figure 5: Graphs of distance vs time for (a) uniform speed and (b) non-uniform speed.

In order to describe the motion of an object, we need to know the direction in which it
is moving as well as how fast it is moving. This information is given by the vector quantity
velocity.

The average velocity in a given direction is the total displacement in that direction divided
by the total time taken.

∆v =
∆s

∆t
, (7)

where ∆t = tf − ti is the total time.
Now suppose we let ∆t become very ‘small’. Then ∆s is small and we obtain the instan-

taneous velocity.

The instantaneous velocity is the velocity at any instant during the motion of an object.

v = lim
∆T→0

∆s

∆t
(8)

The acceleration of an object is a measure of how fast the velocity of an object is changing.

The average acceleration of an object in a given direction is the change in velocity divided
by the total time taken.

Acceleration like velocity is a vector quantity:

∆a =
∆v

∆t
, (9)

where ∆v = vf − vi and ∆t = tf − ti.
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The instantaneous acceleration is the acceleration at any instant during the motion of
an object.

The instantaneous acceleration is defined in a similar way to the instantaneous velocity.

a = lim
∆T→0

∆v

∆t
(10)

Uniform acceleration is obtained when equal changes of velocity occur in equal time
intervals. The graph of velocity versus time for uniform acceleration is a straight line (see
Figure 6). The slope of the graph gives the magnitude of the acceleration.

It can be shown that the area under the graph of velocity versus time is equal to
the total displacement. (See Example 9 and also Section 2.2.)

time

velocity

vi

vf

tf
(a)

time

velocity

(b)

Figure 6: Graphs of velocity vs time in one dimension for (a) uniform acceleration and (b)
non–uniform acceleration.

In future, when we speak about ‘the velocity’ or ‘the acceleration’ we will mean the in-
stantaneous quantities.

Example 6: Velocity and speed

A jogger goes for her usual afternoon run. She leaves from her house and jogs a round trip of
10 km in 1 hour. What is her average speed and her average velocity after 1 hour?

Solution:

We determine the average speed from Equation (6). Hence

average speed =
distance

time
=

10 km

1h
= 10 kmh−1.

Since the jogger starts and finishes at the same point, the total displacement is zero. Hence
the average velocity is also zero.

Example 7: Position-time graph

A cyclist rides at constant velocity and then stops for lunch. After lunch she rides back to
the place from where she started, at a different constant velocity. Find the average velocity
in each of the regions A, B and C indicated on the graph below.

10



Solution:

time (h)

p
os
it
io
n
(k
m
)

A

B

C

0 1 2 3 4
0

10

20

The displacement is the change in position. We may choose the coordinate system so that
the position is along the x axis. In segment A of the journey, the initial position si = 0 x̂ km
and the final position is sf = 20 x̂ km. The displacement ∆s = 20−0 = 20 x̂ km. In segment
B, si = sf so the displacement is zero, and in segment C, ∆s = sf−si = 0−20 = −20 x̂ km.

The average velocities may be found using Equation (7). Thus

Segment A ∆v =
∆s

∆t
=

20 km

1h
= 20 x̂ kmh−1

Segment B ∆v =
∆s

∆t
=

0km

1h
= 0 x̂ kmh−1

Segment C ∆v =
∆s

∆t
=

−20 km

2h
= −10 x̂ kmh−1

Example 8: Average acceleration

An aeroplane coming in to land is travelling at a speed of 100m s−1. What is the average
acceleration of the aeroplane if it comes to rest in a time of 10 s?

Solution:

Assume the aeroplane is travelling in the positive-x direction. The average acceleration
is given by Equation (9). The initial and final velocities are vi = 100 x̂ms−1 and vf =
0 x̂ms−1 corresponding to times ti = 0 s and tf = 10 s. Thus

∆a =
∆v

∆t
=

0− 100

10− 0
= −10 x̂ms−2.

Note that the acceleration is negative. This indicates that the acceleration is in the oppo-
site direction to the velocity and that the aeroplane is slowing down. An object that slows
down is said to decelerate or experience a retardation.

Example 9: Velocity-time graph

A car accelerates uniformly from rest, drives at constant velocity for a short while before
decelerating, and coming to rest at a traffic light. Find the acceleration in each of the segments
A, B and C indicated on the graph below. Find also the total displacement during segments
A, B and C.
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Solution:

time (s)

ve
lo
ci
ty

(m
s−

1
)

A

B

C

0 2 4 6 8
0

5

10

We again choose the direction of motion along the x axis. The acceleration is given by
the slope of the graph and the displacement by the area under the graph. In segment A
the initial velocity vi = 0 x̂ms−1 and the final velocity is vf = 10 x̂ms−1. The change in
velocity in segment A is therefore 10m s−1. In segment B the slope of the graph is zero
so the change in velocity is also zero, i.e. there is no acceleration. In the final segment,
the change in velocity ∆v = vf − vi = 0 − 10 = −10 x̂ms−1. The acceleration is in the
opposite direction to the velocity, indicating that the car slows down.

The average acceleration in each segment may be found using Equation (9). Thus

Segment A ∆a =
∆v

∆t
=

10

4
= 2.5 x̂ms−2

Segment B ∆a =
∆v

∆t
=

0

2
= 0 x̂ms−2

Segment C ∆a =
∆v

∆t
=

−10

2
= −5 x̂ms−2

The displacement equals the area under the graph. We sum the area of triangle A, the
rectangle B and the triangle C to obtain

s = 1
2
× 4× 10 + 2× 10 + 1

2
× 2× 10 = 50 x̂m.

2.2 Kinematic equations for uniform acceleration in one dimension

In this section we derive the kinematic equations for an object travelling in a straight line
with uniform acceleration. For motion in a straight line we drop the vector notation.

For convenience, we assume that the object is initially located at the origin. Thus si = 0
at t = 0 and after a time t, the object is located at sf . To simplify the notation we write the
elapsed time t = ∆t, the displacement s = ∆s = sf − si, the initial velocity u = vi and the
final velocity (after a time t), v = vf .

For uniform acceleration, the average acceleration is the same as the instantaneous accel-
eration (∆a = a). From Equation (9) we obtain

a =
∆v

t
=

v − u

t
.

Rearranging this with v the subject, we find

v = u+ at. (11)

12



Variable Symbol Unit

time t s
displacement s m
initial velocity u m s−1

final velocity v m s−1

acceleration a m s−2

Table 4: Kinematic variables in one dimension.

The graph of Equation (11) is a straight line graph with slope a and intercept u (see Figure 6a).
From Equation (7) with ∆s = s, the average velocity is

v̄ =
s

t
. (12)

If the acceleration is constant, the velocity increases or decreases at a constant rate, the average
velocity is therefore midway between the initial and final velocities. That is

v̄ = 1
2
(u+ v). (13)

Combining Equations (12) and (13) we find that

s = 1
2
(u+ v)t. (14)

Equation (14) represents the area under the graph of velocity versus time. (See Figure 6a and
also Example 9.)

Substituting Equation (11) in Equation (14) we obtain

s = ut+ 1
2
at2. (15)

Finally if we arrange Equation (11) with t as the subject and substitute this in Equation (14),

s = 1
2
(v + u)

(
v − u

a

)
=

1

2a

(
v2 − u2

)
,

and hence

v2 = u2 + 2as. (16)

Example 10: Acceleration of a car from rest

A car accelerates uniformly from rest to 36 kmh−1 in 4 s. Calculate the magnitude of the
acceleration and the distance covered during this 4 s interval.
Solution:

We have the following information: u = 0
v = 36 kmh−1 = 10m s−1

t = 4 s
a = ?
s = ?

We can use Equation (11) to find the acceleration. Thus v = u+ at gives

a =
v − u

t
=

10− 0

4
= 2.5m s−2.
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The displacement may be found using Equation (15).

s = ut+ 1
2
at2 = 0 + 1

2
× 2.5× 42 = 20m.

Example 11: Distance covered by an accelerating spacecraft

A spacecraft is travelling with a velocity of 3000m s−1 when it fires its retrorockets and begins
to slow down with an acceleration whose magnitude is 10m s−2. Determine the velocity of
the spacecraft when its displacement is 200 km relative to the point at which the retrorockets
were fired.
Solution:

Since the spacecraft slows down, the acceleration is in the opposite direction to the velocity.
If we take the direction of motion of the spacecraft as the positive direction, then the
acceleration is negative.
Data: u = 3000m s−1

a = −10m s−2

s = 200 000m
v = ?

We can use Equation (16) to find v. Hence

v2 = u2 + 2as = 30002 + 2× (−10)× 200 000 = 5 000 000m2 s−2.

The velocity is therefore ±2236m s−1. Both answers are acceptable: the negative value
indicates a velocity in the opposite direction to the direction in which the spacecraft was
initially moving. In other words, the retrorockets may have been fired long enough to slow
the spacecraft to a halt and accelerate it in the opposite direction.

2.3 Motion under gravity

The acceleration g due to gravity, close to the earth’s surface, is constant for all bodies at a
given place in the absence of air resistance. The magnitude of the acceleration due to gravity
on earth is approximately g ≃ 9.8m s−2.

For motion under gravity the equations of motions can be applied with the magnitude of
the acceleration given by the value for g above. It must be remembered though that an object
moving upwards suffers a retardation since the acceleration is in the opposite direction to
the velocity.

Example 12: Motion under gravity

Calculate the time taken for a ball thrown vertically upwards, with an initial speed of
19.6m s−1, to return to its starting point, neglecting air resistance.

Solution:

Since the ball returns to its starting position, the displacement is zero. If we take the
upward direction as positive, we must use a = −g = −9.8m s−2. We can then use Equa-
tion (15) with the following values:

s = 0
u = 19.6m s−1

a = −9.8m s−2

t = ?

14



Thus s = ut+ 1
2
at2 gives 0 = ut+ 1

2
at2, or

t =
−2u

a
=

−2× 19.6

−9.8
= 4 s.

We can also solve this problem treating the upward and downward motions separately.
Consider first the upward motion. Here

s = ?
u = 19.6m s−1

v = 0m s−1

a = −9.8m s−2

t = ?
Using v = u+ at we find that for the upward motion t = 2 s. The displacement may now
be calculated from s = ut+ 1

2
at2 giving

s = 19.6× 2 + 1
2
× (−9.8)× 22 = 19.6m.

For the downward motion, we have
s = −19.6m
u = 0m s−1

v = ?
a = −9.8m s−2

t = ?

We can use s = ut+ 1
2
at2 again with the above values to obtain

−19.6 = 0 + 1
2
× (−9.8)× t2,

which gives t = 2 s. The total time taken is therefore 4 s.

2.4 Strategies for problem solving

1. Draw a diagram to represent the situation. A simple ‘block’ drawing using arrows to
indicate the directions of the various velocities and or accelerations is often all that is
needed to gain a good understanding of a problem.

2. Choose a set of coordinate axes and decide which directions are to be called positive
and negative. It is often convenient to place the origin at the place where an object starts
its motion. In problems involving one dimension, the positive axis is usually chosen to go
from left to right. For motion in two directions (see Section 2.5.1) the vertical direction
is usually chosen as the y direction with ‘up’ being positive. To avoid confusion, do not
change your decision in the middle of a calculation.

3. Write down the available values for the kinematic variables (s, u, v, a and t). Be careful
to assign the appropriate sign depending on the choice of coordinate axes made in 2.

4. At least three of the kinematic variables should have values. Be sure to read the question
carefully. There may be implied data like ‘an object is accelerated from rest’, in which
case we may write u = 0.

5. Often a problem is divided in parts. For instance, a car may accelerate for a period
of time, travel at constant velocity for a distance and then slow down. In such a case,
divide the problem into parts, bearing in mind that the initial values for each part are
given by the final values of the previous part.
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2.5 Motion in a plane

2.5.1 Projectile motion

In this section we will consider the applications of the kinematic equations to the motion of
projectiles.

If a body is projected at an angle to the vertical it travels along a curved path. At first
sight it may therefore appear that the equations describing uniformly accelerated motion in
a single line may not be applicable to this type of motion. The equations for straight line
motion may be applied to the motion of a projectile if the initial velocity is resolved into
vertical and horizontal components.

When the initial velocity is resolved into is vertical and horizontal components, we may
treat these components independently. The vertical motion is treated as uniformly accel-
erated motion in a straight line under gravity and the horizontal motion is treated
as uniform motion (constant velocity) in which there is no acceleration. At any
time t in the projectile’s motion, the actual velocity is then the vector sum of the separate
horizontal and vertical velocities appropriate to the time t.

u

u cos θ

u sin θ

θ

θ

h

R

P
Q

Figure 7: Motion of a projectile.

Figure 7 represents the motion of a projectile launched with an initial velocity u at an
angle θ to the horizontal. We locate the origin of our coordinate system at the point P, with
the positive x axis to the right and the positive y axis upwards. The vertical component of the
velocity is uy = u sin θ, the acceleration in the y direction is ay = −g and the net displacement
in the y direction is zero since we assume the projectile is launched over horizontal ground.

We can determine the time of flight using Equation (15). Hence

s = ut+ 1
2
at2

which gives

0 = uyt− 1
2
gt2.

Using uy = u sin θ and rearranging, we find

t =
2u sin θ

g
. (17)
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The total distance covered in the horizontal direction is known as the range of the projectile
(R in Figure 7). There is no acceleration in the horizontal direction (ax = 0), hence the range
is given by sx = uxt or

R = uxt = (u cos θ)×
(
2u sin θ

g

)
.

Using the trigonometric relation sin 2θ = 2 sin θ cos θ, we obtain

R =
u2 sin 2θ

g
. (18)

The maximum range occurs when sin 2θ = 1, which gives 2θ = 90° or θ = 45°.
The height reached by the projectile may also be determined from Equation (15), using

half the total time found in Equation (17). Thus

h = sy = uyt+
1
2
ayt

2

= (u sin θ)×
(
u sin θ

g

)
−

g

2
×
(
u sin θ

g

)2

which gives

h =
u2 sin2 θ

2g
. (19)

Example 13: Projectile motion

An aeroplane flying 1000m above level ground at120m s−1 drops a relief package over a remote
area. Ignoring air resistance, calculate
(a) how long the package takes to hit the ground,
(b) the horizontal and vertical components of the package’s velocity, and hence
(c) the speed and the angle at which the package hits the ground.

Solution:

θ

ux = 120m s−1

R

1000m

We take the origin of our coordinate system at the point where the package was released,
the positive y axis points upwards and the positive x axis to the right.
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(a) The time the package takes to fall to the ground depends only on the vertical distance
the package must fall. In the y direction, the initial velocity uy = 0m s−1, the displace-
ment to the ground is sy = −1000m and the acceleration is ay = −g = −9.8m s−2.
Putting u = 0 in Equation (15) gives s = 1

2
at2, and hence

t =

√
2s

a
=

√
2× (−1000)

−9.8
= 14.3 s.

(b) There is no acceleration in the horizontal direction (since we are ignoring air resis-
tance), hence the horizontal velocity is vx = 120m s−1. The vertical velocity increases
in the negative y direction. Putting uy = 0 in Equation (11) we have,

vy = ayt = −gt = −9.8× 14.3 = −140m s−1.

(c) The magnitude of the resultant velocity is obtained from Equation (3):

v =
√

v2x + v2y =
√

1202 + (−140)2 = 184m s−1.

The angle at which the package hits the ground is found using Equation (4):

θ = tan−1

(
−140

120

)
= −49°.

2.5.2 Uniform circular motion

We now consider the problem of an object moving at constant speed v in a circle of radius r.
Since the direction of the velocity is always changing, the object is, by definition, accelerating.
It can be shown that the magnitude of this acceleration is

a =
v2

r
, (20)

and the direction is towards the centre of the circle.
Since this acceleration is constant in magnitude but not in direction, we cannot use the

constant-acceleration equations for circular motion.

3 Dynamics

In Section 2 we studied kinematics. The motion of objects was described in terms of the
observed quantities s, t, u, v, and a, but it was not considered what agent causes an object to
move. The dynamics of an object is the study of the motion of an object under the
action of forces.

We are familiar with the notions of force and mass from everyday usage. A force might be
described as a ‘push’ or a ‘pull’ and mass as a measure of the size of an object, or the quantity
of matter.

In the 17th century, Isaac Newton, building on the ideas of Galileo and others, developed
laws and mathematical methods that enable us to define these concepts more rigorously, and
treat the motions of objects under the action of forces in a mathematically consistent way.
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3.1 Newton’s first law of motion

Before Newton it was generally thought that a force was required to keep an object moving
(see also Section 3.4.3). Newton instead postulated (on compelling experimental evidence)
that an object would continue moving at constant speed in a straight line unless it was
acted on by an unbalanced force.

Newton’s first law of motion.

A body will continue in a state of rest, or of constant speed along a straight line, unless
compelled by an unbalanced force to change that state.

Force is a vector quantity, and by the unbalanced or net force we mean the resultant
force, or vector sum of all the forces acting on an object. Mathematically we write the net
force

F =
∑

Fi , (21)

where
∑

is the mathematical symbol used to denote a sum of items indexed by the subscript i.
Newton’s first law effectively sets the scene, because it defines the frame (or frames) of

reference (i.e. coordinate system and clocks) with respect to which his remaining two laws of
motion have meaning.

The class of reference frames with respect to which Newton’s first law is valid are called
inertial reference frames.

When a net force acts on an object, the object’s velocity changes. The amount of change
depends on the force as well as the mass of the object. If the same force acts on two objects
of different mass, the more massive object will experience a smaller change in velocity. The
tendency of an object with mass to resist a change in its state of motion is called the inertia
of the object. The inertia of an object is measured by it’s mass.

Inertia

Inertia is that property of a body by virtue of which it tends to persist in a state of rest or
uniform motion in a straight line.

3.2 Newton’s second law of motion

Newton’s first law refers to a situation where there is no force. If a net force acts on an object,
the object will change its state of motion according to Newton’s second law.

Newton’s second law of motion

If a net force acts on a body, the body will be accelerated; the magnitude of the acceleration
is directly proportional to the magnitude of the net force and inversely proportional to the
mass of the body, whilst the direction of the acceleration is in the direction of the net force.

In mathematical terms Newton’s second law may be written as:

a ∝
F

m
or

F ∝ ma,

where a is the magnitude of the acceleration of the mass m produced by the net force F.
In SI units, force is defined so as to make the constant of proportionality equal to 1.
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Unit of force

In the SI, the unit of force is the newton (N). The newton is defined as the net force which
will give a mass of 1 kilogram an acceleration of 1m s−2 in the direction of the force.

Using the above definition, Newton’s second law takes the familiar form

Fnet = ma (22)

where F is the net force in newtons (N), m in kilograms and a in m s−2.

3.2.1 Free-body diagrams

A free-body diagram is a diagram that represents an object and the forces acting on the
object. The forces are represented by arrows (since force is a vector quantity) with length
proportional to the magnitude of the force and the direction of the arrow indicating the
direction of the force. A free-body diagram should always be drawn when a problem involves
Newton’s second law.

Example 14: Free-body diagram

Suppose two people push a car along a horizontal road. One person applies a force of 300N and
the other a force of 200N. The car has a mass of 1200 kg and the total force due to resistance
is 400N and acts in the opposite direction to the forces exerted by the people pushing. Draw
a free-body diagram that shows the horizontal forces on the car and find the acceleration of
the car.

Solution:

We need to use Newton’s second law. However we first need to find the resultant force.
The free-body diagram below shows the car as a square and the arrows representing the
forces.

300N
200N400N

humansresistance

Since the forces all act along one direction (the x direction say), the resultant force will
also be in this direction, as will the acceleration. We choose the positive direction to the
right, thus the net force is

F =
∑

Fi = +300N + 200N− 400N = +100N.

The positive sign indicates that the force, and hence the acceleration, is in the direction
we chose to be to the right.

The acceleration may now be determined from Equation (22):

a =
F

m
=

100N

1200 kg
= 0.083m s−2.
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3.3 Newton’s third law

Newton’s third law

If body A exerts a force on body B, body B exerts a force equal in magnitude and opposite
in direction on body A.

Mathematically:

FAB = −FBA (23)

If two people pull on spring scales hooked together, no matter how hard each person tries
to pull, the readings on the two scales will be the same. Likewise, if a ball is hit with a bat,
there is not only a force exerted by the bat on the ball, but also a force, which is the same in
magnitude but opposite in direction, exerted by the ball on the bat. To walk, a person exerts a
force on the earth. Consistent with Newton’s third law, the earth exerts an oppositely directed
force of equal magnitude on the person’s foot and causes the person to move forward. Note
that in Newton’s third law and in all the above examples: the two forces act on different
bodies.

3.4 Types of forces

There are four known types of forces in Nature.

1. Gravitational force
Gravitation is the weakest of the known forces. It is also the only force that is purely
attractive. Weight is a gravitational force (see Section 3.4.1).

2. Electromagnetic force
Most forces we encounter in daily life are electromagnetic forces, they arise from the
interaction of the electrically charged particles that make up atoms and molecules. Im-
portant examples are:

• Normal contact forces like collisions and throwing of objects.

• Tension forces such as surface tension and the tension in stretched strings.

• Compressive forces such as those in springs or in a hydraulic press.

• Frictional forces such as air drag on a skydiver and the grip on shoes (see Sec-
tion 3.4.3).

Many, if not most forces we encounter are combinations of forces.

3. Weak nuclear force
A manifestation of the electromagnetic force that plays a role in the radioactive decay
of atoms.

4. Strong nuclear force
Plays a role in the interactions in nuclei of atoms.
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3.4.1 The gravitational force and weight

Every particle in the universe attracts every other particle. The magnitude of the force acting
on each of two particles of mass m1 and m2, separated by a distance r, is given by

F =
Gm1m2

r2
, (24)

where G = 6.67× 10−11 Nm2 kg−2 is the universal gravitational constant.

By a particle we understand something so small that it may be regarded as a mathematical
point. Although Equation (24) is for ‘point’ particles, it can be used with good accuracy when
the masses are small compared to the distance separating them. For objects that are not
particles, r in Equation (24) is the distance between the centres of the objects.

The weight of an object is the gravitational force the earth exerts on it.

The weight always acts downward, towards the centre of the earth. An object will not neces-
sarily weigh the same on another planet.

If the mass of an object is m and the acceleration due to gravity is g, then its weight on
earth is given by

W = mg =
GMEm

R2
E

,

where ME and RE are the mass and radius of the earth respectively. Here we used Newton’s
second law (Equation (22)) with the acceleration a = g. Since the mass m of the object
appears on both sides of the equation, the acceleration due to gravity on a planet of mass M
and radius R is given by

g =
GM

R2
. (25)

Example 15: The mass of the earth

Calculate the mass of the earth given that the radius of the earth is RE = 6.38× 106 m,
g = 9.8m s−2 and G = 6.67× 10−11 Nm2 kg−2.

Solution:

We rearrange Equation (25) with M the subject. Then

ME =
gR2

E

G
=

9.8m s−2 ×
(
6.38× 106 m

)2

6.67× 10−11 Nm2 kg−2

= 5.98× 1024 kg.

For distances greater than the earth’s radius (as in the case of a satellite), we must add
the height above the earth’s surface to the radius.
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Example 16: Acceleration due to gravity for a satellite in orbit

Determine the acceleration due to gravity for a satellite in orbit 200 km above the surface of
the earth. Use the same data given in Example 15.

Solution:

We again use Equation (25) with the following data: M = ME = 5.98× 1024 kg
R = RE + h = (6.38× 106 + 200× 103)m and
G = 6.67× 10−11 Nm2 kg−2. Hence

g =
GM

R2
=

6.67× 10−11 × 5.98× 1024

(6.38× 106 + 200× 103)2
= 9.2m s−2.

3.4.2 The Normal force

Normal in a mathematical sense means perpendicular. An object resting on a table for
instance exerts a force equal to it’s weight on the surface of the table. By Newton’s third law,
the table exerts an equal and opposite force on the object.

The normal force FN is the force, or component of a force, that a surface exerts on an
object in contact with it.

The normal force N is often equal to the weight W of a body — but it is not necessarily
so. Consider the following cases:

b

W

N F

θ
b

W

N

θ

b

W

W⊥

W‖

NCASE I CASE II

CASE III

N = W N = W − F cos θ N = W cos θ

W⊥ = W cos θ W‖ = W sin θ

Example 17: Weight and the normal force in an elevator

Find the apparent weight of a person whose mass is 60 kg in an elevator, when the elevator

(a) is stationary,

(b) accelerating upward at 2m s−2,

(c) accelerating downward at 2m s−2, and

(d) in free-fall.
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W W W W

N

N

N
N = 0

a = 0m s−2 a = 2m s−2 a = −2m s−2 a = −9.8m s−2

(a) (b) (c) (d)

Solution:

Imagine a person standing on a scale in the elevator. The apparent weight of the person
is the normal force exerted by the scale on the man (the reading on the scale). Hence we
must find the net force in each case and use Newton’s second law with the acceleration a
given by the acceleration of the lift. In the diagrams above, W is the weight of the person
(unchanged in each case) and N the normal force. The net force on the person is the vector
sum of the normal force and the weight. If we regard the upward direction as positive,
then

F = −W +N,

where

W = mg = 60× 9.8 = 588N.

Using Newton’s second law (F = ma), the normal force is

N = ma+W.

(a) The acceleration is zero, hence

N = ma+W = 0 + 588 = 588N.

(b) Here a = 2m s−2, therefore

N = ma+W = 60× 2 + 588 = 120 + 588 = 708N.

(c) The acceleration is now a = −2m s−2, hence

N = ma+W = 60× (−2) + 588 = −120 + 588 = 468N.

(d) In free-fall, the lift (and person inside) is accelerating downwards at 9.8m s−2. Thus
a = −9.8m s−2 and

N = ma+W = 60× (−9.8) + 588 = −588 + 588 = 0N.
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3.4.3 Friction

The force that opposes the motion of one surface moving over another, with which it is in
contact, is called the force of friction. Its magnitude depends on the materials of which the
two surfaces are made, as well as on the force pressing them together. Some of the energy
put into machines is transformed into heat energy because of the friction between moving
parts. The heat may cause serious damage in addition to being wasteful. We cannot get rid of
friction entirely but we can reduce it considerably by suitable choice of surfaces and by using
lubrication.

Consider a force F applied to a block B on a horizontal

B
b

W

N

F
f

surface S. If F is slowly increased from zero, the body
remains at rest until F reaches a certain value, after which
B accelerates in the direction of F (to the right in the
diagram alongside).

As the force F increases, the force of static friction
fs increases and ‘adjusts itself’ to always exactly cancel
F . The maximum value of the force of static friction is

fs (max). Experimentally we find that

fs (max) = µsN , (26)

where N is the normal force between the two surfaces in contact and µs, the coefficient of
static friction, is a physical constant for the pair of surfaces in contact.

When the applied force F is larger than µsN , there is a resultant force in the direction of
F and the body will start to slip and accelerate in the direction of F. Once the block starts
to slide, the frictional force drops below µs. We now talk about the force of kinetic (or
sliding) friction fk. Experimentally it is found that

fk = µkN , (27)

where µk, the coefficient of kinetic friction, is usually slightly less than µs. It is an experimental
fact that µs depends only on the nature of the sliding surfaces; it is independent of the area
of contact or the relative speed of the surfaces.

Example 18: Block on a horizontal surface with friction

A block which has a mass of 100 kg rests on a rough horizontal floor. The coefficient of sliding
friction between the block and the floor is 0.25. Calculate the horizontal force FH which would
be required to move the block along the floor with constant velocity.

Solution:
When the block moves with constant velocity a = 0.
Therefore, since F = ma, and a = 0, the total un-
balanced force F must be zero. Taking the positive
direction to the right,

FH − Ff = 0.

Also, Ff = µN = mgµ, therefore

Ff

FH

W

N

FH = mgµ = 100× 9.8× 0.25 = 245N.
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Example 19: Block on an inclined plane with friction

A body of mass 20 kg rests on a plane surface AB inclined at 10° to the horizontal, B being
lower than A. The mass is connected by a light string which passes over a pulley at B, to
another mass of 20 kg that hangs freely below B. If the coefficient of sliding friction between
the body and the surface of the plane is 0.40, calculate the acceleration with which these
bodies would move, and the tension in the string connecting them.
Solution:

10°

A

B

b

WW⊥

W‖
T

N

Ff

W

T

b

A B

Consider the acceleration of both masses and choose the direction of motion as positive.
The net force in the direction of motion is then

W − T + T +W‖ − Ff,

where the frictional force Ff = µN = µmg cos 10°. The total mass m = 2m = 40 kg.
Newton’s second law then gives

mg +mg sin 10° − 0.4mg cos 10° = 2ma

which gives a = 3.82m s−2. (Note that because the masses are equal, we do not need to
know the mass for this calculation.)

The tension T can be obtained by considering the motion of the mass B. Newton’s second
law gives W − T = ma, hence

T = W −ma = 20× 9.8− 20× 3.82 = 119.6N.

A considerably smaller force called rolling friction is sufficient to keep one body moving
against another if there are hard rollers or balls between two surfaces. It is important that
the metal surfaces of roller or ball bearings that come into contact should be really hard. If
one of the surfaces is not hard then the rolling friction might well be more than the sliding
friction; it is for this reason that aircraft landing on soft snow fit skis in place of wheels.

An important example of Newton’s first law is the case of an object falling through a
medium. When it first starts to fall, it speeds up because its weight is bigger than the
upthrust on it. But the dragging force on it increases as its velocity increases, and a stage
can be reached when the upthrust plus dragging force (upwards) is as large as the weight
(downwards). There is then no unbalanced force and the object continues to fall with the
velocity it had reached — a constant velocity known as the terminal velocity.

Example 20: Velocity time graph for a skydiver

A skydiver jumps from an aeroplane. Sketch a velocity–time graph for the vertical motion of
the skydiver indicating where the skydiver reaches terminal velocity, opens her parachute and
lands.
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A B C D E
time

velocity

Solution:

The origin represents the moment the skydiver jumps from the aeroplane. Her initial ve-
locity in the vertical direction is zero at this point. Her acceleration on the other hand is
equal to the acceleration due to gravity. Since we take the upward direction as positive,
the acceleration is negative. (The slope of the graph gives the acceleration. If we draw a
tangent to the curve at the origin, the slope of this line is negative). As the downward
velocity increases, the magnitude of the acceleration decreases as the frictional drag due
to the air increases. The force due to friction is in the opposite direction to the velocity.
At A the skydiver reaches terminal velocity — here the force due to the air resistance is
equal and opposite to the force due to gravity. The slope of the graph between A and B is
zero and the velocity remains the same. At B she opens her parachute. Her acceleration
here is positive and is a maximum as she opens her parachute, decreasing to zero as she
again reaches terminal velocity at C. The segment between D and E is where she reaches
the ground.

3.4.4 Tension

If two people pull on either end of a rope there will be a certain tension in the rope. The force
experienced by each person will be the same and will equal the tension in the rope. Figure 8
depicts the free-body diagram for this scenario. Each end of the rope provides the reaction

b b
−T T −T T

Figure 8: Tension in a rope

force on the person pulling at that end, as required by Newton’s third law. The force of the
people pulling on the rope in effect gets transmitted through the rope.

3.5 Application of Newton’s laws

In this section we discuss applications of Newton’s laws to various systems. In Section 3.5.2 we
consider systems that are in equilibrium and in Section 3.5.3 some examples of non-equilibrium
situations are discussed.
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3.5.1 Guidelines for solving problems involving Newton’s laws

The following points must be remembered when the relationship F = ma is used:

1. The mass in Newton’s second law (F = ma) represents the total mass accelerated by
the net force.

2. F represents the net force in the direction of motion. If the accelerated mass is
acted upon by a number of forces, the total net component of the forces in the direction
of the motion must be calculated.

The following systematic approach to problems in which the relationship F = ma has to be
used may be useful:

1. Draw a diagram representing the general situation.

2. Select one object from the situation whose motion is to be analysed and draw a free-
body diagram for this object. For this, the object is removed from its environment,
together with all the forces exerted on it by bodies with which it interacts.

3. Select a convenient origin and orientation of the coordinate axes.

4. Write an expression for the net force.

5. Apply Newton’s second law.

3.5.2 Equilibrium applications

Equilibrium

An object is in equilibrium when it has zero acceleration.

When the acceleration of an object is zero, the net force on the object is zero by Newton’s
first law. Thus when an object is in equilibrium in two dimensions, we must have

∑
Fx = 0 (28a)

∑
Fy = 0. (28b)

Examples of systems in equilibrium include a book lying on a table, a lamp hanging from a
cord or a vehicle moving at constant velocity.

Example 21: Tension in a cord, one dimension (equilibrium case)

A lamp is suspended from the ceiling by a cord. If the lamp has a mass of 5 kg, determine the
tension in the cord.

Solution:

Since the system is in equilibrium, we use Equation (28b) to
find the net force. T −W = 0 gives

T = W = mg = 5kg × 9.8m s−2 = 49N.

W = mg

T
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Example 22: Tension in a cord, two dimensions (equilibrium case)

A lamp is suspended by three cords as depicted in the diagram below. The cord attached to
the ceiling makes an angle of 60° with the ceiling and the cord attached to the wall is stretched
horizontally. If the lamp has a mass of 5 kg, determine the tensions in the cords.

60°

Solution:

Since the forces (tensions in the cords) do not act in the
same direction, we will need to resolve the components of
the forces in the x and y directions. First we construct
a free-body diagram representing the forces acting at the
intersection of the cords (the magnitudes of the forces are
labelled A, B and C).

The tension B is simply equal to the weight of the lamp.
Hence

B = W = mg = 5× 9.8 = 49N.

Equating the x and y components of A, B and C according
to Equations (21), we have

60°C

B

A

Ax + Bx + Cx = 0 and Ay +By + Cy = 0,

where

Ax = A cos 60° and Ay = A sin 60°,

Bx = 0 and By = −B,

Cx = −C and Cy = 0.

Thus, equating first the y components:

A sin 60° − 49 + 0 = 0, which gives A = 56.6N.

Equating the x components:

A cos 60° + 0− C = 0, which gives C = 28.3N.
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3.5.3 Non-equilibrium applications

When an object is not in equilibrium, there are unbalanced forces acting on the object and
hence the net force is non-zero. The approach to solving non-equilibrium problems is almost
identical to the approach used to treat equilibrium problems. Instead of equating the net
force to zero as in Equations (28), we must use Newton’s second law. Thus for an accelerating
object in two dimensions

∑
Fx = max (29a)

∑
Fy = may. (29b)

Example 23: The tension in a rope (non-equilibrium)

Suppose the magnitude of the net force accelerating a car and trailer is F = 3000N. The
mass of the car is 1000 kg and the mass of the trailer is 500 kg. Determine the acceleration of
the car and trailer, and the tension in the rope. Assume the mass of the rope is negligible.

F

1000 kg
500 kg

T −T

Solution:

The acceleration may be determined by applying Newton’s second law to the whole system
(the car and trailer). We are given the net force and we know the total mass of the system.
Thus

a =
F

m
=

3000

1000 + 500
= 2m s−2.

Newton’s second law may also be applied to the trailer by itself. Here the net force in the
horizontal direction is the tension T and the mass of the system is the mass of the trailer.
The acceleration was found above. Hence

F = T = ma = 500× 2 = 1000N.

Example 24: Objects connected by a rope

A block of mass 10 kg on a table is attached to a block
of mass 30 kg by a rope passing over a pulley as shown
in the diagram alongside. Ignoring all frictional effects
and assuming the pulley to be massless, find (a) the
acceleration of the two blocks and (b) the tension in
the cord. (Take g = 10m s−2.)

10 kg
T

T

30 kg
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Solution:

(a) The net force available to accelerate the system is due to the 30 kg mass (the forces
on the 10 kg block in the y direction are equal and opposite). Hence

F = W = −mg = −30 kg × 10m s−2 = −300N.

The total mass of the system is the mass of the two blocks, mTOT = 10 kg + 30 kg =
40 kg. We can now use Newton’s second law to find the acceleration.

a =
F

m
=

−300N

40 kg
= −7.5m s−2.

(b) the only unbalanced force on the 10 kg mass is due to the tension T in the rope. Using
Newton’s second law with a = 7.5m s−2, since the 10 kg block is accelerated in the
positive x direction,

T = ma = 10 kg × 7.5m s−2 = 75N.

3.5.4 Motion on a smooth inclined plane

When a block of mass m is placed on a smooth frictionless inclined plane, as shown in Figure 9,
the block will be accelerated down the plane. The force in the direction of motion which gives
rise to the acceleration of the mass is the component of the weight of the body down the plane.
The weight W of the body (which is a force acting vertically downwards) can be resolved into
components acting along the plane and perpendicular to the plane (see also Section 1.3.5).

θ

m

W sin θ

W

W cos θ

Figure 9: An object on a smooth inclined plane.

If the plane is inclined at an angle θ to the horizontal, then the component of the weight
parallel to the plane is

W‖ = W sin θ,

and the component perpendicular to the plane is

W⊥ = W cos θ.

Example 25: Motion on an inclined plane

Show that the acceleration of a sliding body down a frictionless plane is independent of the
mass of the body.
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Solution:

Consider a body with mass m which is placed on a frictionless plate inclined at an angle
θ to the horizontal as in Figure 9. The net force in the direction of the motion is

F‖ = W sin θ.

The total mass accelerated is m. Using Newton’s second law, we have

F = ma = F‖ = W sin θ = mg sin θ,

and hence

a = g sin θ,

which is independent of the mass m.

3.6 The centripetal force

For an object moving at constant speed v in a circle of radius r the centripetal acceleration is
given by

a =
v2

r

(see Section 2.5.2). By Newton’s first law, if an object is accelerating, there must be a force
acting on it. For circular motion this force is known as the centripetal force. The centripetal
force may take different forms. For instance, for a car travelling in a circular path on a
horizontal surface the centripetal force is the frictional force between the tyres and the surface;
for a satellite in orbit around a planet the centripetal force is the gravitational force; for an
object at the end of a string spun in a circular path, the tension in the string provides the
centripetal force. Newton’s second law takes the form

∑
Fnet = m

v2

r
, (30)

where the resultant force causing the circular motion
∑

Fnet is called the centripetal force.
The centripetal force is directed towards the centre of rotation (in the same direction as the
acceleration).

3.7 Satellites in circular orbits

Consider an object of mass m (e.g. a satellite) moving in a circular orbit (radius r) at a
constant speed v0 around the earth. Newton’s law of gravitation, the second law F = ma with
a = v20/r (see Equations (24), (22) and (20)), then gives

GmM

r2
= m

(
v20
r

)
,

or

v20 =
GM

r
. (31)
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The period T of this object is the time to complete one full orbit.

Time = circumference/speed, so

T =
2πr

v0
. (32)

Squaring (32) and substituting from (31) gives

T 2 =
4π2r2

v20
=

4π2r2

GM/r
or

T 2 =
4π2r3

GM
.

This important result, which shows that the square of the satellite’s orbit is proportional to
the cube of its orbital radius, is known as Kepler’s third law. You should remember that

T 2 ∝ r3 . (33)

3.7.1 Geostationary orbits

As long ago as 1945 the scientist and science fic-
tion writer Arthur C. Clarke had suggested that, if
a satellite were placed above the equator at a height
such that its orbital period was equal to the rota-
tional period of the Earth, it would appear stationary
from a point on the Earth’s surface. This character-
istic would enable the satellite to provide permanent
coverage of a given area.
By substituting the value of T as 8.64× 104 s (i.e.
42 hours) the value of R is found to be 4.23× 107 m.
Taking the Earth’s radius as 6.37× 106 m, the height
of the orbit is 3.59× 107 m or 3.6× 104 km. This is
called a geostationary orbit.
Clarke had further suggested that if three such satel-
lites were equally spaced in geostationary positions
above the equator then communication coverage of
most of the world would be possible except for the
polar regions.

3.6× 104 km

A geostationary orbit

World-wide coverage with
geostationary satellites

4 Hydrostatics

The science of hydrostatics is the study of fluids at rest. For our purposes we take a fluid to
be a liquid or a gas.

4.1 Density

The density ρ of a substance is its mass per unit volume.
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ρ =
m

V
. (34)

The density of a substance changes with both temperature and pressure. Therefore when the
density of a substance is given, the temperature should also be given.

The density of pure water at 4 ◦C is 1000 kg per cubic metre, i.e. 1000 kgm−3 (or 1 g cm−3).

4.2 Relative density

The relative density (RD) of a substance is defined as the ratio of the density of the substance
and the density of water. Thus

RD =
density of substance

density of water (at same temp.)
. (35)

Relative density is a ratio and therefore has no units.
Note that since density = mass/volume, then if we consider equal volumes of the substance

and water, the expression for RD becomes

RD =
mass of a given substance

mass of an equal volume of water (at same temp.)
.

Relative density is sometimes known as the specific gravity. It may be determined for both
solids and liquids — see Practical Manual.

Example 26: Relative density of aluminium.

The density of aluminium is 2700 kgm−3. Find the relative density of aluminium given that
the density of water is 1000 kgm−3.

Solution:

We can apply Equation (35) directly. Hence

RD =
2700 kgm−3

1000 kgm−3
= 2.7.

Example 27: Relative density of a mixture.

10 cm3 of a liquid A whose relative density is 0.8 is mixed with 15 cm3 of a liquid B whose RD
is 1.2. If there is no contraction on mixing, find the relative density of the mixture.

Solution:

To calculate the RD of the mixture, we need to find the density of the mixture. We are
given the volume of each liquid, thus we first find the mass of each liquid.

Suppose the density of water is ρ, and let the density and mass of liquid A and B be ρA,
mA and ρB, mB respectively. For 10 cm3 of A

RD =
ρA
ρ

=
mA/10

ρ
= 0.8,

which gives

mA = 8ρ.
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Similarly for liquid B

RD =
ρB
ρ

=
mB/15

ρ
= 1.2,

which gives

mB = 18ρ.

The density of the liquid is therefore

ρAB =
mA +mB

10 + 15
=

26ρ

25
.

Finally, we can determine the density of the mixture:

RD =
ρAB

ρ
=

26ρ

25ρ
= 1.04.

4.3 Pressure

Pressure

If a force F acts over an area A perpendicular to the force, then the pressure P is the
force per unit area.

P =
F

A
. (36)

The SI unit of pressure is the Nm−2 or the pascal (1 Pa = 1Nm−2).

4.3.1 Summary of some laws of pressure in fluids at rest

A fluid is a liquid or a gas.

1. The pressure at a depth h in a fluid at rest, due to the fluid itself, is hρg pascals where
ρ is the density of the fluid.

b P

b O

area
A

h

Let O be a point in the surface of a fluid and let P
be a point in the fluid a distance h vertically below O.
Imagine a cylinder of cross-sectional area A having OP
as its axis, as in the diagram. The whole weight of the
cylinder of fluid acts on the base around P.

Weight of cylinder = mass× g

= volume× density× g

= (A× h)× ρ× g

Substituting the above expression for the weight in Equa-
tion (36), we find

P =
(A× h)× ρ× g

A
,
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which gives

P = hρg. (37)

The pressure hρg is sometimes called the ‘hydrostatic pressure’. So the absolute pres-
sure at P equals (the pressure at the surface O) + (the hydrostatic pressure). If the
pressure at O is the atmospheric pressure P0, then

P = P0 + hρg . (38)

In other words, in a fluid at rest, the pressure increases linearly with distance below the
surface, assuming that the density of the liquid remains constant throughout.

2. At any point in a liquid which is at rest the total pressure is the pressure on the
surface of the liquid plus the pressure due to the liquid itself

3. At any two points in the same horizontal plane in any one liquid which is at rest, the
pressures are the same. (Otherwise the liquid would flow.)

4. Pressure applied to the surface of a liquid is transmitted equally throughout the liquid
in every direction. (This is called Pascal’s Law.) This principle is used in the Hy-
draulic Press (or the Bramah Press – after Joseph Bramah (1748–1814), locksmith and
inventor).

4.3.2 Gauge pressure

As the name implies, this is the pressure recorded by a pressure gauge, and is frequently
the difference between absolute pressure and atmospheric pressure. The equation ∆P = hρg
indicates why it is convenient to refer to pressures by heads of liquid.

A unit commonly used for gas pressures is the atmosphere (atm), which is defined to be
101 325Pa. It is essentially equivalent to that exerted by 760mm of mercury (mmHg) of
specified density under standard gravity. Note that 1mmHg exerts a pressure of 133Pa.

Pressure can be measured by various means. Two ways are described below.

The simple barometer

b b b

h

P0 P0

A B
X

Atmospheric pressure P0 ‘balances’ the pressure due to the
mercury column of height h. The pressure at A or B therefore
equals the pressure at X. Hence

P0 = hρg,

where ρ = 13 600 kgm−3 is the density of mercury.
Standard atmospheric pressure corresponds to a mercury
height of 0.76m, i.e.

P0 = 0.76× 13 600× 9.8

= 1.01× 105 Nm−2.

This pressure is often stated simply as ‘76 centimetres of mer-
cury’.
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Another unit of pressure often used is the bar, it is related to pascals in the following way:

1 bar ≡ 105 Nm−2 = 105 Pa = 100 kPa
1mbar = 10−3 bar ≡ 102 Nm−2 = 100Pa.

Garage pressure gauges read tyre pressure in bars in excess of atmospheric pressure.
Standard atmospheric pressure is approximately 1013 millibars (mbar). Near the ground,

atmospheric pressure decreases by about 1 cm of mercury per 120m above sea level. Thus,
in Pietermaritzburg (about 600m above sea level), atmospheric pressures are usually about
71 cmHg, or 950mbar.

Example 28: A water barometer.

Calculate the height of a water barometer corresponding to standard atmospheric pressure.

Solution:

We need to calculate the height of a column of water that will give a pressure of
1.01× 105Nm−2. Using Equation (37) with ρ = 1000 kgm−3:

h =
P0

ρg
=

1.01× 105 Nm−2

1000 kgm−3 × 9.8m s−2
= 10.3m.

Example 29: Pressure due to a column of air.

If the average density of air in the science block is 1.20 kgm−3 and a barometer reads
71.00 cmHg at ground level, what will it read on the roof 30m up? Take the density of
mercury as 13 600 kgm−3.

Solution:

The Pressure due to 30m of air is given by Equation (37):

P = hρg = 30× 1.20× 9.8 = 353Nm−2.

The height of mercury (H) required to give this pressure is

H =
P

ρg
=

353

13 600× 9.8
= 0.0026m = 0.26 cm.

The barometer on the roof will therefore read 71.00− 0.26 = 70.74 cmHg.

The Fortin barometer

P

The Fortin barometer is an accurate barometer and differs in
two important ways from a simple barometer:

1 The mercury level in the reservoir is adjusted so as to
touch the tip, P, of a pointer which is at the zero of the
height scale.

2 The height of the mercury column is read very accu-
rately using a ‘vernier’ scale. (See the Fortin barometer
in the laboratory.)
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The manometer

A B

C

h
to vessel
containing

gas whose

pressure P

is required

The pressure (P ) at A is equal to the pressure at B (same
level). But the pressure at B is equal to atmospheric
pressure P0 plus the pressure due to the column h, of
fluid.

Pressure at A = Pressure at B

Pressure at B = Atmospheric pressure at B + hρg

∴ P = P0 + hρg.

(If C is below the level of A, P = P0 − hρg.)

4.4 Archimedes’ principle

Archimedes’ Principle

When a body is wholly or partly immersed in a fluid, it experiences an upthrust or apparent
loss of weight, equal to the weight of fluid displaced.

This principle is true for any solid displacing any fluid (liquid or gas).
In the case of a floating body the full weight of the body is supported by the upthrust of

the fluid in which it is floating. This application of Archimedes’ principle is called the law of
flotation, and may be stated as follows:

Law of flotation

A floating body displaces its own weight of the fluid in which it floats.

Example 30: Apparent weight of a mass suspended in a liquid.

A copper ball (relative density 8.9) has a mass of 267 g. Calculate (a) its weight in air (b) its
apparent weight when suspended in water.

Solution:

(a) The weight in air, W = mg = 267× 10−3 kg × 9.8m s−2 = 2.62N.

(b) By Archimedes’ principle, the ball experiences an upthrust equal to the weight of
water displaced. Hence the weight when suspended in water is equal to the weight in
air, minus the upthrust it experiences due to the water. We can determine the mass
of water displaced (and hence the upthrust) from Equation (35) considering equal
volumes:

RD =
mass of ball

mass of water displaced by ball
,

which gives

mass of water displaced by ball =
267× 10−3 kg

8.9
= 0.030 kg.

The upthrust is equal to the weight of water displaced, which is Fupthrust = mg =
0.030 kg × 9.8m s−2 = 0.294N. The apparent weight of the ball when suspended in
water is therefore

Wapparent = W − Fupthrust = 2.62− 0.294 = 2.326N.
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5 Work, energy and power

Work and energy are concepts we use every day for any number of different things. For the
purposes of formal study however, we need precise definitions that enable us to interpret the
concepts of work and energy in a consistent way. From these definitions we deduce relations
that are applicable to real systems.

5.1 The work done by a constant force

We consider a constant force of magnitude F acting on an object of mass m at an angle θ as
shown in Figure 10. The force moves the object over a distance s.

θ

F

F cos θ
θ

F

F cos θ

s

Figure 10: An object moved a distance s by a force F .

The amount of work done on an object by a force is equal to the product of the displacement
and the component of the force in the direction of the displacement.

W = Fs cos θ , (39)

where F and s are the magnitudes of F and s. The angle θ is the included angle between F
and s. Note that:

1. If the applied force is in the direction of the displacement, then θ = 0° and W = Fs.

2. If the applied force is in the opposite direction of the displacement, then θ = 180° and
W = −Fs.

3. If the applied force is perpendicular to the displacement, then θ = 90° and W = 0. (i.e.
a force acting at right angles to a displacement does no work.)

Work is a scalar quantity and the unit of work is the newton-metre or joule.

One joule is the work done by a force of one newton when it moves its point of application
through a distance of one metre in the direction of the force (1 joule ≡ 1 J ≡ 1Nm).

Example 31: Work done on an object dragged over a distance

Find the work done when a trunk is dragged a distance of 10m by a force of 50N applied at
an angle of 45° above the surface over which the trunk is moved.
Solution:

The work done may be obtained directly from Equation (39) with the values given. Hence

W = Fs cos θ = 50N× 10m× cos 45° = 354 J.

39



5.2 Energy

Different forms of energy are identified:

(a) Kinetic energy

(b) Potential energy

• gravitational

• elastic

• electrostatic

(c) Thermal and internal energy

(d) Radiant energy

(e) Chemical energy

(f) Nuclear energy

(g) Mass energy

On a microscopic scale, all forms of energy can be classified as either (a) or (b).
Changes occur between different forms of energy, and the amounts possessed by different

bodies, but if we take all forms into account, we find there is no change in the total energy in
the universe. This is the law of conservation of energy. Mathematically:

Total energy of a closed system
before some event

=
Total energy of a closed system
after the event

5.2.1 Kinetic energy and the work-energy theorem

Suppose a constant force F acts on an object of mass m. If the object moves a distance s
in the direction of the force F , we can obtain the work done on the object by multiplying
F = ma on both sides by the displacement:

W = Fs = mas.

Since the force acting on the object is constant, the acceleration of the object is also constant
and we may apply the kinematic equations of motion for constant acceleration. Substituting
v2 = u2 + 2as (with as the subject) in the equation above and using vi and vf for the initial
and final velocities instead of u and v, we obtain

W = 1
2
mv2f − 1

2
mv2i . (40)

If the kinetic energy of an object is defined as

Ek =
1
2
mv2 , (41)

then the right hand side of Equation (40) represents the change in kinetic energy of the object
when an amount of work W is done on it. Although we have derived Equation (40) for the
work done by a constant force, it can be shown to hold in general for the work done by any
type of force. Furthermore, if more than one force does work on an object, the total work
done is equal to the work done by the resultant force:

W (due to the resultant force) = ∆Ek = Ek(final)− Ek(initial) . (42)

Equation (42) is known as the work-energy theorem for an object. The work done on an
object can be positive or negative depending on the size of the angle θ in Equation (39).

Note that the kinetic energy Ek is a positive scalar quantity that represents the energy
associated with a body because of its motion. It is either
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1. the work done by the resultant force in accelerating the body from rest to an instanta-
neous speed v, or

2. the work done by the body on some external agent which brings it to rest.

(1) and (2) are equivalent.
The work done on an object by the resultant force is the same as the sum of the work

done by each force separately. Different types of energy are associate with the work done by
different types of forces.

Example 32: The work done in accelerating a car

A 1000 kg car accelerates uniformly from rest to a speed of 30m s−1 in a distance of 20m.
Determine

(a) the kinetic energy gained,
(b) the work done by the net force acting on the car, and
(c) the magnitude of the average net force.

Solution:

(a) The car starts from rest, so the initial kinetic energy is zero and the kinetic energy
gained is the final kinetic energy. From Equation (41):

Ek =
1
2
mv2 = 1

2
× 1000× 302 = 4.5× 105 J.

(b) By the work-energy theorem, the work done is equal to the kinetic energy gained,
hence W = 4.5× 105 J.

(c) From Equation (39) with θ = 0 (since we must assume the force accelerating the car
acts in the direction of the displacement of the car),

F =
W

s
=

4.5× 105 J

20m
= 2.25× 104 N.

5.2.2 Potential energy

Potential energy is the energy possessed by a system by virtue of the relative positions of its
component parts

Gravitational potential energy

Suppose we exert forces on a body of mass m and on the earth, and thereby push the body m
to a rest position a vertical distance h above its initial position. The work W = Fs = mgh is
done against the gravitational force. We say that the system has gained gravitational potential
energy

Ep = mgh . (43)

There is no gain in kinetic energy. The pulls of the earth on the body and the body on the
earth have done negative work.

When the system is released the two gravitational forces both do positive work on the body
and on the earth. Both, in principle, acquire kinetic energy, but that gained by the earth is
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negligible. The potential energy is associated with the relative positions (i.e. separation) of
the two masses making up the system.

Gravitational potential energy is a kind of energy that can be completely recovered and
converted into kinetic energy.

Example 33: Work done in lifting an object

Find the work done in lifting a body whose mass is 5 kg through a vertical distance of 2m.

Solution:

From Equation (43):

W = mgh = 5kg × 9.8m s−2 × 2m = 98 J.

Elastic potential energy (stretching/compressing a spring)

Consider a spring having natural length ℓ0. Suppose the spring is stretched by an amount x
to a new length ℓ (i.e. x = ℓ− ℓ0). Hooke’s law gives us the force F exerted by the spring.
It is

F = −kx , (44)

where the force constant k depends on the spring. The minus sign indicates that F points in
the opposite direction to the displacement. This is a restoring force.

We cannot use W = Fs to determine the work done in stretching this spring because F is
not constant. It depends on the extension x.

To find the work done in stretching a spring
by an amount x0, we consider the graph alongside.
This graph shows that the force varies linearly with
x. It is not constant.

The work done is the area under a force–
displacement graph. The shaded area is
W = 1

2
× base× height.

W = 1
2
× x0 × kx0 =

1
2
kx2

0.

This is the work done by an external agent in
stretching the spring. This work is stored as elastic
potential energy in the spring until we release the
spring.

displacementx0

force
kx0

The potential energy for a spring is given by

Ep = 1
2
kx2.

Note that x is the extension/compression from the spring’s natural length.

Internal energy

A frictional force always opposes relative motion. When surfaces slide over one another, such
a force always does negative work. This work represents energy being transferred to random
molecular potential and kinetic energy (internal energy).
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In the figure alongside, B exerts a frictional force on
A to the right, which moves its point of application to
the left, and so does negative work. Macroscopically we
see that A experiences a force which reduces its speed.
Microscopically work is being done on a molecular scale
that results in an increase of the random kinetic and
potential energies of individual molecules. We observe a
temperature increase along the common surface.

A

B

Movement of A

5.3 Conservation of mechanical energy

The mechanical energy of an object is defined as the sum of its potential and kinetic energies:

E = Ep + Ek. (45)

If there is no work done on an object by any applied forces, then the mechanical energy of
the object is conserved. This means that the total mechanical energy of the object always
remains the same. Hence ∆E = 0 and

∆Ep +∆Ek = 0. (46)

Equation (46) may be rewritten in terms of the final and initial kinetic and potential
energies in the useful form

(Ep + Ek)final = (Ep + Ek)initial. (47)

Example 34: Conservation of mechanical energy

A mass of 80 kg slides down a smooth inclined plane 16m high and 80m long. Neglecting
friction,

(a) calculate the potential energy of the mass at the top of the slope.

(b) How much kinetic energy does it have at the bottom of the slope?

(c) Determine the speed of the mass at the bottom of the slope.

Solution:

(a) Relative to the bottom of the slope, the potential energy at the top is

∆Ep = mgh = 80 kg × 9.8m s−2 × 16m = 1.25× 104 J.

(b) Mechanical energy is conserved, hence the potential energy lost equals the kinetic
energy gained. The kinetic energy at the bottom of the slope is therefore Ek =
1.25× 104 J.

(c) Rearranging Equation (41):

v =

√
2× Ek

m
=

√
2× 1.25× 104 J

80 kg
= 17.7m s−1.
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5.4 Power

Power is the rate at which work is done.

If work W is done in a time t, then the average power P for the time interval t is given by

P =
work

time
=

W

t
. (48)

Power is not associated with any direction, and since work and time are scalar quantities,
power is also a scalar quantity. The SI unit of power is the watt (W).

One watt is the power developed when one joule of work is done per second.

If the force doing work is in the same direction as the displacement, then Equation (39)
becomes

W = Fs. (49)

Substituting Equation (49) in Equation (48), we obtain the useful expression

P =
W

t
=

Fs

t
= F v̄. (50)

The velocity in Equation (50) is the average velocity, and the force is in the direction of the
motion.

Example 35: The power generated by an accelerating car

A car whose mass is 1000 kg accelerates constantly from rest at 2.0m s−2 for 10 s. Determine
the average power generated by the net force accelerating the car.

Solution:

We first find the force accelerating the car. Using Equation (22), we have

F = ma = 1000 kg × 2m s−2 = 2000N.

To find the power, we must either calculate the work done and use Equation (48), or the
average velocity and use Equation (50). We will demonstrate both methods.
Method 1: To find the work done, we need to determine the distance travelled. Using
Equation (15), the displacement

s = ut+ 1
2
at2 = 0 +

2m s−2 × (10 s)2

2
= 100m.

The work done is therefore

W = Fs = 2000N× 100m = 2× 105 J,

and the power generated is

P =
W

t
=

2× 105 J

10 s
= 2× 104 W.

Method 2: Since the acceleration is constant, the average velocity is half the initial plus
final velocity. As the initial velocity is zero, we have

v̄ = 1
2
v.
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Then from Equation (11):

v̄ = 1
2
v = 1

2
(u+ at) = 1

2
(0 + 2m s−2 × 10 s) = 10m s−1.

The power can now be found from Equation (50). Thus

P = F v̄ = 2000N× 10m s−1 = 2× 104 W.

6 Impulse and momentum

6.1 Impulse

The figure below shows a cricket ball being hit by a bat. The ball’s initial velocity is vi just
before contact is made, and a final velocity vf just after leaving the bat. During the time
interval ∆t = tf − ti that the ball and bat are in contact, the force exerted on the ball changes
in a complicated manner. The graph also shows the magnitude of the average force F̄ between
bat and ball.

vi
F

vf

Time
ti tf

Force

F̄

If the cricket ball is to be struck well, both F̄ and ∆t are important. We define the impulse
J of the force as

J = F̄∆t . (51)

Impulse equals (average force) × (contact time). It is a vector having the direction of the
average force. The SI units of impulse are N s or kgm s−1.

6.2 Momentum

The linear momentum p of an object is the product of the object’s mass and velocity.

p = mv . (52)

The SI units of momentum are the same as the impulse J, viz. N s or kgm s−1. Momentum is
a vector quantity, whose direction is that of the velocity.
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6.3 The impulse–momentum theorem

We now recall Newton’s second law.

F = ma =
m∆v

∆t
=

m(vf − vi)

∆t
or

F∆t = mvf −mvi = pf − pi.

That is

J = pf − pi , (53)

i.e. (impulse) = (change in momentum of the body). This is the impulse-momentum
theorem.

6.4 The law of conservation of momentum

Suppose that the net external force applied to some system is zero. Then J = 0 and the
impulse–momentum theorem implies pf = pi. This leads us to state the law of conservation
of linear momentum

The law of conservation of momentum

If the net external force acting on a system is zero, the total momentum of the system remains
constant.

This law, like the law of conservation of energy, is one of the most powerful principles in
physics.

6.5 Collisions

A collision is a process (or event) in which the time interval during which the bodies touch
is small relative to the total observation time. We can then draw a clear distinction between
‘before’ and ‘after’. The law of conservation of momentum is very useful for analyzing collisions
because if the system is isolated (i.e. no net external force is acting), momentum is conserved
and we can write

momentum before event = momentum after event .

6.5.1 Classification of collisions

Total energy is always conserved, but when mechanical energy is converted into heat it is not
always possible to apply the energy conservation law in a useful way.

(a) Elastic collisions are those in which kinetic energy is conserved. Truly elastic
collisions can only occur in practice on an atomic scale; even then they are not always
elastic.

Consider a head-on elastic collision between two objects of mass m1 and m2. The initial
and final velocities of the objects are u1, u2 and v1 and v2 respectively. If the target
body is initially at rest, u2 = 0. From conservation of K.E. we have:

1
2
m1u

2
1 =

1
2
m1v

2
1 +

1
2
m2v

2
2 . (54)
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From conservation of momentum (which applies in all collisions – elastic or other-
wise) we have:

m1u1 = m1v1 +m2v2 . (55)

From Equation (54) and Equation (55) we can find the final velocities of the two objects:

v1 =
m1 −m2

m1 +m2

u1 (56a)

v2 =
2m1

m1 +m2

u1. (56b)

You are not required to prove Equations (56). It will be expected however that you can
apply them in the following special cases:

1. If m1 = m2, then v1 = 0
and v2 = u1.

2. If m1 ≫ m2, then v1 ≃ u1

and v2 ≃ 2u1.

(b) inelastic collisions are those in which kinetic energy is not conserved; it may be con-
verted into internal energy (as usually happens), or perhaps elastic potential energy of
deformation. On a macroscopic scale this is the most common type of collision.

A completely inelastic collision is one in which two bodies stick together after impact
(as a bullet being embedded in a target). The loss of kinetic energy is large but not
complete.

Note that if the external force is zero, momentum is always conserved regardless of
whether the collision is elastic or completely inelastic. We conclude that collision-type prob-
lems are mostly solved using momentum-conservation techniques.

Example 36: A bullet fired into a block of wood

In a ballistic test, a 2 kg block of wood hangs by a cord of negligible mass and a bullet of
mass 80 g is fired with a velocity of 300m s−1 into the block. Calculate the initial velocity with
which the block is set in motion.

300m s−1

80 g 2 kg 2.08 kg

v

Solution:

Since there are no external forces acting on the system , we can apply conservation of
momentum. After the collision, we consider the bullet and block as a single system with
mass m = 2.08 kg and velocity v. Hence

momentum before impact = momentum after impact
∴ m1u1 +m2u2 = mv
∴ 0.08× 300 + 0 = 2.08× v,
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which gives

v =
0.08× 300

2.08
= +11.5m s−1 .

7 Equilibrium of rigid bodies

Up until now, we have been dealing only with forces acting at a common point. Often, the
forces acting on a body are not applied from a common point but have different “lines of
action”. In this section we discuss the conditions which need to be satisfied in order for the
rigid body to be in equilibrium.

7.1 Centre of gravity

For any rigid body there is a single point through which the resultant of the weights of all
particles composing the body acts. This point is called the centre of gravity of the body.

If a body is suspended from any point, the body will come to rest in such a position that
its centre of gravity is vertically below the point of suspension. Thus, by suspending a body
first from one point and then another, along with a plumb line, the centre of gravity can be
located.

Alternatively, the centre of gravity can often be found by balancing.
For regular shaped bodies, the position of the centre of gravity is often obvious from

symmetry. For example the centre of gravity of a uniform rod, disc or sphere is located at the
mid-point, for triangular lamina at the intersection of the medians and for rectangular lamina
at the centre of the diagonals.

7.2 The moment of a force, or the torque about an axis

Besides producing translational motion of an object, when a force acts on a rigid object, it
can also cause the object to rotate. The turning effect due to the action of a force is known
as torque. For simplicity, we will consider only the torque due to coplanar forces acting in a
plane perpendicular to the axis of rotation. In general, torque is a vector quantity.

The torque τ (or moment) of a force F about a given axis

b

F

r

pivot

is given by the product of the force and the perpendicular
distance of its line of action from the axis.

τ = F × r . (57)

The unit of torque is the newton-metre (Nm). The distance
r is often called the ‘lever arm’ of the turning effect.

Principle of moments

When a body is in equilibrium under the action of any number of coplanar forces, the
algebraic sum of the moments of the forces about any point in the plane is zero.

Mathematically:

∑
τ = 0 . (58)
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When considering moments about a point, we must choose a positive and negative di-
rection. The convention is that anticlockwise moments are positive and clockwise moments
negative. This choice is arbitrary, and the results of any calculation will be the same if the
signs are reversed, so long as one is consistent.

Example 37: Moment about an axis

Two children are playing on a see-saw. The total length of the see-saw is 4m and it is pivoted
exactly in the middle. One child weighs 100N and sits at the end of one side of the see-saw.
If the other child weighs 160N, how far from the other end must she sit so that the see-saw is
balanced.

2m d

100N
160N

R

Solution:

Taking moments about the pivot and using Equations (57) and (58):
∑

τ = 100× 2 +R× 0− 160× d = 0,

which gives d = 1.25m. The child must therefore sit 75 cm from the other end of the
see-saw.

7.2.1 The equilibrium of a rigid body under the action of a system of coplanar
forces

Figure 11 shows a rigid bar AB resting on two supports (a trestle table for example). R1 and
R2 are the reaction (normal) forces at the supports, and W is the weight of the bar (if the
bar is uniform the weight acts at the centre of the bar). If the system is in equilibrium (there
is no acceleration), then the sum of all the forces, as well as the sum of all the moments must
be zero. We can therefore use both Equations (28) and Equation (58).

A B

a

c

b

R1 R2

W

Figure 11: A rigid object in equilibrium.

Taking moments about A,

R1 × a + R2 × b︸ ︷︷ ︸
anticlockwise moments

− W × c︸ ︷︷ ︸
clockwise moments

= 0.
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Since the bar is in equilibrium, we also have

∑
Fi = R1 +R2 −W = 0.

For a rigid body to remain in equilibrium when acted on by a set of coplanar forces two
conditions must be satisfied:

1. The vector sum of all the external forces acting on the body must be zero:

∑
F = 0.

Because force is a vector quantity, the sum of the x components must be zero, and
separately, the sum of the y components must also be zero:

∑
Fx = 0 and

∑
Fy = 0.

2. The algebraic sum of the moments of all the forces about any axis perpendicular to
the plane of forces must be zero (Principle of moments):

∑
τ = 0.

7.2.2 Stable, unstable and neutral equilibrium

These three basic types of equilibrium can be distinguished by giving the body a small dis-
placement. Below are examples for each type of equilibrium for a ball on a surface.

Stable equilibrium: the ball returns to its original position.

Unstable equilibrium: the ball takes up a new position beyond an
original small displacement.

Neutral equilibrium: The ball takes up a new position at the end
of the displacement.

Note the tendency (where possible) for the centre of gravity to descend to the lowest position,
this being the most stable arrangement.

8 Rotational motion

8.1 Angular velocity

If a body (or particle) is rotating with uniform speed v in a circular path we recognize that
the particle sweeps through equal angles in equal time intervals. We then define an angular
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speed ω (omega) given by

ω =
∆θ

∆t
, (59)

where ∆θ is the angle (measured in radians) swept out during time ∆t. An angle, expressed
in radians, is related to an angle in degrees by

2π radians = 360°.

The units of ω are radians per second (rad s−1). (Sometimes ω is expressed in revolutions per
minute, rev/s etc.)

An important question is how ω is related to the linear
speed v. To answer this we use the definition of an angle. The
angle ∆θ is defined as (the arc length ∆s) ÷ (circle’s radius).
i.e.

∆θ =
∆s

r
or r∆θ = ∆s.

Dividing through by ∆t gives

∆s

∆t
= r

∆θ

∆t
.

But ∆s/∆t = v and ∆θ/∆t = ω, so

∆θ

∆s

b

r

v = rω . (60)

The concept of angular velocity includes both the rate of rotation and the direction of
the axis of rotation. Angular velocity is a vector quantity represented by a vector parallel
to the axis of rotation. To find the direction of ω, curl the fingers of your right hand in the
direction in which the body is rotating. Your thumb then points in the direction of ω.

8.2 Angular acceleration

Angular acceleration α is the rate of change of angular velocity. Just as

a =
v − u

t
, or v = u+ at

(assuming a is constant), so

α =
ω − ω0

t
, or ω = ω0 + αt

(assuming α is constant), where ω0 and ω are the initial and final angular velocities of a
rotating body having uniform angular acceleration α.

Since v = rω,

dv

dt
= r

dω

dt
or

a = rα , (61)

for constant r.
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8.3 Constant angular acceleration equations of motion

Make the following replacements:

s −→ θ

u −→ ω0

v −→ ω

a −→ α (a and θ constant)

Then

linear motion angular motion

v = u+ at ω = ω0 + αt

s =
u+ v

2
t θ =

ω0 + ω

2
t

s = ut+ 1
2
at2 θ = ω0t+

1
2
αt2

v2 = u2 + 2as ω2 = ω2
0 + 2αθ

8.4 Newton’s second law for rotational motion about a fixed axis
The diagram alongside shows a rigid body rotat-
ing about an axis perpendicular to it. Suppose the
body is composed of a very large number N of mass
particles m1, m2, . . . , mN ; only three of which are
shown for clarity. The torque τ1 acting on particle
m1 is

τ1 = F1 × (⊥r distance from m1 to the axis)

= (m1a1)× r1

= m1r
2
1α,

since a1 = r1α. Similarly τ2 = m2r
2
2α, τ3 = m3r

2
3α,

etc.

b m1

b
m2

b

m3

r1

r2

The net torque τ acting on the body is

τ = τ1 + τ2 + · · ·+ τN

=
(
m1r

2
1 +m2r

2
2 + · · ·+mNrN1

2
)
α, (62)

since α is the same for all particles.
We now define an important quantity: The moment of inertia I of a body about an axis

is equal to the sum of the products of the mass of each particle in the body and the square of
its distance from the axis concerned. Thus

I =
(
m1r

2
1 +m2r

2
2 + · · ·+mNrN1

2
)

=
∑

mir
2
i . (63)

The SI unit of I is kgm2. Substituting Equation (63) into (62) gives:

τ = Iα , (64)
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which is Newton’s second law. The derivation above neglects the inter-particle forces between
the masses; however the effects of these cancel exactly (because of Newton’s third law) and
the overall result is the same.

8.5 Rotational kinetic energy and moments of inertia

We refer again to the diagram in Section 8.4. The kinetic energy of mass particle m1 is

1
2
m1v

2
1 = 1

2
m1(r1ω)

2 = 1
2
m1r

2
1ω

2.

The total kinetic energy of the body is the sum of the kinetic energies of all its particles. Thus

Ek =
1
2

(
m1r

2
1 +m2r

2
2 + · · ·+mNr

N
1

)
ω2,

since ω is the same for all particles. The term in brackets is the moment of inertia of the body
about the chosen axis. Hence the rotational kinetic energy is

Ek =
1
2
Iω2 . (65)

Some important moments of inertia are shown below. You are not expected to memorize the
formulae.

R

Hoop or cylindrical shell

I = MR2

R1
R2

Hollow cylindrical

I = 1

2
M

(
R2

1 +R2
2

)

R

Solid disk or cylindrical

I = 1

2
MR2

a

b

Rectangular plate

I = 1

12
M(a2 + b2)

R

Solid sphere

I = 2

5
MR2

R

Thin spherical shell

I = 2

3
MR2

L

Long thin rod

I = 1

3
ML2

L

Long thin rod

I = 1

12
ML2

53



8.6 Work and power

Suppose a constant force F acts tangentially on the rim
of a wheel which has a radius r, and that the wheel
rotates through an angle θ whilst the force is acting on
it. The work done by the force is given by

W = Fs,

where s is the arclength PQ = rθ. Thus

θ

r

P F

Q

F

W = Fs = f × rθ = (Fr)× θ,

or

W = τθ . (66)

Since power P =
dW

dt
, for a constant torque, we have

P = τ
dθ

dt
,

thus

P = τω . (67)

8.7 Angular impulse and momentum

Recall Newton’s second law:

τ = Iα = I
(ω − ω0)

t

if the angular acceleration α is constant. So

τt = I(ω − ω0). (68)

We define Iω to be the angular momentum and τt to be the angular impulse. We will use the
symbol L for angular momentum. Hence

L = Iω . (69)

The units of angular momentum are kgm2 s−1.

Notice from Equation (68) that if no external torque acts on the system then angular
momentum is conserved. We write

I1ω1 = I2ω2 , (70)

which is the law of conservation of angular momentum.
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Physical concept
linear

quantity/equation
angular

quantity/equation

displacement s θ
velocity v ω
acceleration a α
cause of acceleration force F torque τ
inertia mass m moment of inertia I
Newton’s second law F = ma τ = Iα
work W = Fs W = τθ
kinetic energy 1

2
mv2 1

2
Iω2

momentum p = mv L = Iω

Table 5: Comparison of linear and angular quantities.

9 Simple harmonic motion

Consider a point P moving with uniform angular speed ω in a circle of radius A. At time
t = 0 the point is at Q. The angle φ is the initial phase.

x

ω

φ

ωt

P

Q

x

ωt = 2π

+A

−A

−φ
ωt

The projection of the position of P on the x axis is given by

x = A cos(ωt+ φ). (71)

Geometric definition of S.H.M.

If a point moves with uniform speed in a circle, its projection on a diameter of the circle
moves with S.H.M.

Conversely, if a particle moves in a line in such a way that the coordinate x which specifies
its position in the line at any instant t is given by Equation (71), then the particle is moving
with S.H.M.

If the point P takes a time T to go round one complete revolution, then the period

T =
2π

ω
. (72)

The angular speed ω is also referred to as the angular frequency and is given in terms of the
cyclic frequency f by

ω =
2π

T
= 2πf. (73)
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The velocity and acceleration of the point P can be obtained from Equation (71) by dif-
ferentiating with respect to time. Thus

v = ẋ =
dx

dt
= −Aω sin(ωt+ φ) (74)

and

a = ẍ =
d2x

dt2
=

dv

dt
= −Aω2 cos(ωt+ φ). (75)

9.1 Relations in S.H.M.

The velocity and acceleration can obtained in terms of the displacement. First square Equa-
tion (74), then use the relation cos2 θ + sin2 θ = 1 and Equation (71) to obtain

v2 = ω2(A2 − x2). (76)

From Equations (71) and (75) the acceleration is given by

a = −ω2x. (77)

Equation (77) shows that the acceleration of a particle moving with S.H.M. is proportional to
the displacement and is in the opposite direction. Note that the acceleration in S.H.M. is not
constant.

9.2 The force for S.H.M.

Combining Equation (77) with Newton’s second law we obtain

F = ma = −mω2x. (78)

Equation (78) has the same form as Hooke’s law

F = −kx, (79)

where the spring constant is given by

k = mω2. (80)

By combining Equation (72) with Equation (80) we obtain the period of oscillation of a particle
subject to a Hooke’s law force:

T = 2π

√
m

k
. (81)

Simple harmonic motion is the motion executed by a particle subject to a force that is
proportional to the displacement of the particle but opposite in sign.
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9.3 A simple pendulum

L

b

mg sin θ

mg
mg cos θ

T

θ

x

An ideal pendulum consists of a point massm suspended on
a massless inelastic string of length L. The displacement
x = Lθ is along the arc of the circle of radius L. The
restoring force is the component of the weight along the
arc:

F = −mg sin θ. (82)

For small oscillations and θ in radians θ ≈ sin θ. Hence

F ≈ −mgθ = −mg
x

L
. (83)

Comparing Equation (83) with Hooke’s law (Equation (79)) shows that for small oscillations,
an ideal pendulum moves with S.H.M. The period is independent of the mass and is given by

T =
2π

ω
= 2π

√
L

g
. (84)

10 Elasticity

10.1 Introduction

The properties of any material are ultimately determined by the type and arrangement of the
atoms or molecules which make up the material. In describing the mechanical properties of
materials however, a detailed knowledge of the forces between the particles of which a material
is composed is not always required. The mechanical properties of materials are those that
describe the behaviour of a material when it is exposed to external forces. These properties
are of importance when choosing which material to use for building houses, manufacturing
cars, the heels of stiletto shoes or a toddler’s toy. Important mechanical properties of materials
include strength, toughness, stiffness and ductility.

The strength of a material describes what forces it can stand before breaking. Toughness
is a measure of how a material breaks, for example how brittle it is. The stiffness describes
a material’s resistance to deformation and ductility relates to how malleable a material is.

In this section we will examine certain mechanical properties of matter which are important
in the everyday use of materials and which are readily described from measured quantities.

10.2 Stress and strain

When a force is applied to an object, the object will always deform in some way, even when
no change is apparent. In order to make comparisons of the effects of an external force on
different materials we introduce the concepts of stress and strain.

Stress

Stress (σ) is the force per unit area applied to a material.
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For an applied force F on a cross-sectional area A,

stress = σ =
F

A
. (85)

The unit of stress is the Nm−2 or pascal (Pa).

Strain

Strain (ε) is the fractional deformation of a body.

There are different types of stress which result in different kinds of deformation or strain (see
Figure 12). In this course we will only consider longitudinal stress and the corresponding
strain. A longitudinal stress which produces an increase in length of a sample is referred
to as a tensile stress, while a stress that produces a decrease in length is referred to as a
compressive stress.

For a longitudinal tensile or compressive stress, the corresponding strain is defined as the
change in length per unit length. If a stress produces a change of length ∆ℓ in a sample
material of original length ℓ, then

strain = ε =
∆ℓ

ℓ
. (86)

Since strain is a ratio, it has no units. Strain, just like stress, can be either tensile or com-
pressive.

(a) (b) (c)

Figure 12: Different kinds of stress. The arrows indicate the applied force F . (a) Longitudinal
stress. (b) Shear stress. (c) Bulk stress.

The relation between the stress and the corresponding strain of a material can be deter-
mined experimentally. A typical graph of the relation between the tensile stress and strain is
depicted in Figure 13.

For a relatively small stress, the relationship between the stress and strain is linear (OA is
a straight line in Figure 13). Point A is the linear limit for a material, and up to this point the
stress is proportional to the strain (see Section 10.2.2). Between points A and B, the stress
is no longer proportional to the strain, however the material will still return to its original
length once the stress is removed. The region OB is the elastic region and point B is known
as the elastic limit of the material (see Table 6 below). After point B the deformation is no
longer reversible and is now called a plastic deformation. A material that has been deformed
plastically will not return to its original length when the stress is removed. The dotted line
in Figure 13 shows a possible curve for a material that has been stretched beyond the elastic
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Figure 13: The relation between the tensile stress and strain for a material.

limit. OO′ represents a permanent change of length of the material after the stress has been
removed. Point C in Figure 13 represents the point at which the material breaks. BC is known
as the plastic region.

For ductile materials like copper, the elastic region is relatively short and the plastic region
much longer, whereas for a stiff (brittle) material like glass, the plastic region is very short. A
stiff material will break soon after the elastic limit is reached.

For elastic deformations in the linear region (the straight line OA in Figure 13), the constant
of proportionality (the slope) is called theYoung’s modulus (Y ) for a material and is defined
by

Y =
stress

strain
=

σ

ε
=

F/A

∆ℓ/ℓ
. (87)

Table 6 lists values of Young’s modulus and the elastic limit for some common materials.

Young’s modulus Y Elastic limit
×1010 (Pa) ×108 (Pa)

Aluminium 7 1.8
Copper 11 1.5
Steel 20 2.5
Cast iron 19 1.6
Concrete 2
Bone 1.5

Table 6: Young’s modulus and the elastic limit for various materials
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Example 38: Mass suspended from a wire.

A mass of 10 kg is suspended from a wire of length 1.700m and diameter 2.00mm. This causes
it to stretch by 5.00mm. Calculate

(a) the stress in the wire,
(b) the strain in the wire, and
(c) Young’s modulus for the wire material.

Solution:

(a) The force on the wire causing it to stretch is due to the weight of the 10 kg mass.
Hence

σ =
W

A
=

mg

πr2
=

10× 9.8

π × (10−3)2
= 3.12× 107 Pa.

(b) From Equation (86):

ε =
∆ℓ

ℓ
=

5.00× 10−3

1.700
= 2.94× 10−3.

(c) Young’s modulus may be calculated from the definition. Equation (87) gives

Y =
stress

strain
=

3.12× 107

2.94× 10−3
= 1.06× 1010 Pa.

Example 39: Minimum diameter of a wire under stress.

A steel wire 2.00 metres long supports a load of 15 kg. Calculate the minimum diameter
allowable if its extension under this load is not to exceed 3.0mm. (Young’s modulus for steel
is 2.0× 1011 Pa.)

Solution:

A force equal to the weight of the 15 kg mass is the maximum allowable force. Hence the
maximum stress allowed is

σ =
mg

Amin

=
15 kg × 9.8m s−2

Amin

,

where

Amin = π

(
dmin

2

)2

.

We can determine the stress from Equation (87). Thus

σ = Y × ε = Y ×
∆ℓ

ℓ
= 2.0× 1011 ×

3.0× 10−3

2.00
= 3.0× 108 Pa.

Hence

Amin =
mg

σ
=

15× 9.8

3.0× 108
= 4.9× 10−7 m2,

which gives

dmin = 7.9× 10−4 m = 0.79mm.
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10.2.1 Measurement of Young’s modulus

Young’s modulus for a wire may be measured using apparatus
like that depicted in the diagram alongside. Two wires of the
same material are suspended from the same support. One
wire has a millimetre scale attached to it and the other wire
a vernier scale. The wire with the main scale is kept taut by
a mass suspended from its end while the other wire is placed
under variable tension by adding or removing weights. Wires
of the same material are used to eliminate possible errors
that could occur due to a change in temperature during the
measurements, or possible yield of the support, since these
will affect both wires in the same way.

The change in length (∆ℓ) can then be measured for each
added (or removed) weight (F ) from the vernier scale. The
original length (ℓ) is measured with a metre rule and the
cross-sectional area (A) of the wire can be determined from
the diameter of the wire, measured with a micrometer screw
gauge.

Plotting a graph of the extension ∆ℓ versus the load F
should give a straight line with slope ∆ℓ/F . Young’s modulus
for the wire can then be obtained by substituting the value
of the slope into Equation (87).

wires of the same
material

vernier
scale

main
scale

fixed
load

variable
load

10.2.2 Hooke’s law

We can rewrite Equation (87) in terms of F and ∆ℓ to obtain

Fapplied =

(
Y A

ℓ

)
∆ℓ.

By Newton’s third law, the material exerts a force equal and opposite to the force applied on
it. This force is called the restoring force, as the material tries to restore it’s equilibrium
configuration. The restoring force is proportional to and in the opposite direction to the
extension of the material. Thus

Frestoring = −k∆ℓ , (88)

Equation (88) is known as Hooke’s law. The constant of proportionality k in Equation (88) is
called the spring constant. The spring constant is related to Young’s modulus by

k =
Y A

ℓ
. (89)

Hooke’s law is important in the description of materials that are used for their elastic proper-
ties. For example coiled springs and rubber bands obey Hooke’s law so long as the extension
∆ℓ is relatively small and stays within the linear portion of the elastic region. As can be
seen from Equation (89), the spring constant is larger for a greater cross-sectional area and
a smaller length. Short, springs are therefore ‘stiffer’ than long springs and thick springs are
stiffer than thin springs.
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Example 40: Compressing and stretching a spring.

A spring with a spring constant k = 200Nm−1 has a length of 8.0 cm when not under load.
(a) What force must be applied to compress the spring to half its length? (b) What force
must be applied to stretch the spring to twice its length?

Solution:

Hooke’s law states that F = −k∆ℓ where F is the restoring force. The applied force is
equal and opposite to the restoring force hence Fapplied = k∆ℓ.

(a) When compressed to half its length, the change in length ∆ℓ = 4.0 cm, hence

Fapplied = k∆ℓ = 200× 0.040 = 8.0N.

(b) When stretched to twice its length, the extension ∆ℓ = 8.0 cm and

Fapplied = k∆ℓ = 200× 0.080 = 16N.

11 Fluid dynamics

In Section 4 some properties of fluids at rest were discussed. Here we extend this to a superficial
study of the motion of fluids. Fluid dynamics is a vast and difficult subject that is not yet
completely understood. It is nevertheless possible to draw some important conclusions and
treat a number of useful equations which have a wide applicability.

11.1 Steady versus non-steady flow

Fluid flow can be steady or non-steady. If the fluid velocity at a given point does not
change with time, then the flow is steady. (This does not mean that the velocity is
the same at all points in the fluid. Consider two different points A and B in the fluid. The
fluid velocity at A will, in general, be different from the fluid velocity at B.) An example of
steady flow is water flowing slowly from a garden hose. Examples of non-steady flow are tidal
motion, where flow varies periodically with time at a given point, and a waterfall, where the
velocity fluctuates erratically.

11.2 Laminar versus turbulent flow

We distinguish two types of fluid flow. If the flow is such that neighbouring layers of the fluid
slide by each other smoothly, the flow is said to be laminar or streamline. In this kind of
flow, each particle of the fluid follows a smooth path, called a streamline, see Figure 14(a).
In steady flow, streamlines do not cross. Above a certain speed, the flow becomes turbulent.
Turbulent flow is characterized by flow in small whirlpool-like circles called eddy currents
or eddies. Eddies absorb a great deal of energy and although a certain amount of internal
friction, called viscosity, is present during streamline flow, it is much greater when the flow
is turbulent. (This is one reason why the science of aerodynamics is of crucial importance in
the design of modern motor cars, jet liners, etc.)
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(a) (b)

Figure 14: Laminar or streamline flow (a) versus turbulent flow (b).

11.3 Flow rate and an equation of continuity

v1

ℓ1

A1

v2

ℓ2

A2

Let us consider the steady laminar flow of a fluid through an enclosed tube or pipe as shown
above. The mass flow rate Q is defined as the mass m of fluid passing a given point per unit
time:

Q =
m

t
. (90)

The volume V1 of a fluid passing region (1) in the above pipe in a time t is V1 = A1ℓ1, where
ℓ1 is the distance the fluid moves in time t. Here A1 is the cross-sectional area of the tube in
region (1). The average velocity of fluid in region (1) is v1 = ℓ1/t, the flow rate Q1 is thus

Q1 =
m

t
=

ρ1V1

t
=

ρ1A1ℓ1
t

=
ρ1A1v1t

t
= ρ1A1v1.

Likewise, in region (2) Q2 = ρ2A2v2. Since no fluid flows in or out of the sides of the pipe, the
flow rates in regions (1) and (2) must be equal. Thus

Q1 = Q2

and

ρ1A1v1 = ρ2A2v2. (91)

Such an equation in physics is called an equation of continuity. This one is essentially a
statement of mass conservation. The mass of fluid entering a region (1) in a time t must equal
the mass of fluid leaving region (2) in the same time period.

If the fluid is incompressible, which is an excellent approximation for liquids under most
circumstances (and often for gases as well), then ρ1 = ρ2 and the equation of continuity
becomes

A1v1 = A2v2. (92)
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11.4 Bernoulli’s equation

Bernoulli’s principle states that: where the velocity of a fluid is high, the pressure is low,
and where the velocity is low, the pressure is high.

Bernoulli developed an equation that expresses this principle quantitatively. Bernoulli’s
equation is

P + 1
2
ρv2 + ρgh = constant along a streamline. (93)

Here h represents the height, at some point in the streamline, above some arbitrarily chosen
reference position.

This equation is essentially the law of conservation of energy for a moving fluid. Suppose
we write the left-hand side of Bernoulli’s equation as

1

V

(
PV + 1

2
mv2 +mgh

)
,

where V (= m/ρ) is the volume of an arbitrary element of fluid, then
(
1
2
mv2+mgh

)
expresses

the total mechanical energy of the element and the PV term is due to the work done in moving
the element along the streamline.

Strictly, Bernoulli’s equation applies only if the following conditions are met:

1. the flow is steady,

2. the flow is laminar,

3. the fluid is non-viscous, and

4. the fluid is incompressible.

A formal derivation of this equation, using the work-energy theorem, can be found in most
first-year physics textbooks; although it is not difficult, we will not attempt it here.

11.5 Viscosity

Real fluids have a certain amount of internal friction which is called viscosity. It exists in
both liquids and gases, and is essentially a frictional force between different layers of fluid
as these layers move relative to one another. In liquids it is due to the cohesive forces between
the molecules; in gases it arises from collisions between the molecules.

Different fluids have different viscosities. Syrup is more viscous than water; grease is more
viscous than engine oil; liquids in general are much more viscous than gases. The viscosity of
different fluids can be expressed quantitatively by a coefficient of viscosity η (eta) which
we define below.

11.5.1 Laminar flow in tubes: Poiseuille’s law

If a fluid had no viscosity, it could flow through a level pipe without a force being applied.
Because of viscosity, a pressure difference between the ends of a tube is necessary for the
steady flow of any real fluid, be it water or oil in a pipe, or blood in the circulatory system of
a human.

The rate of flow of fluid in a tube depends on the viscosity of the fluid, the pressure
difference, and the dimensions of the tube. A Frenchman, J.L. Poiseuille, who was interested
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in the physics of blood circulation, determined how these variables affect the volume flow rate
Q of an incompressible fluid undergoing laminar flow in a cylindrical tube. His result, known
as Poiseuille’s law, is given by the equation

Q =
V

t
=

πr4∆P

8ηL
, (94)

where r is the radius of the tube, L is its length, η is the coefficient of viscosity of the fluid,
and ∆P (= P2 − P1) is the pressure difference between the ends of the tube.

The derivation of Poiseuille’s law requires calculus and we shall not attempt it here. You
should remember that the radius enters in Poiseuille’s law to the power of four.

11.5.2 A spherical object moving in a fluid: Stokes’ law

One more useful relation in a viscous fluid flow is the expression for the force F exerted on a
sphere of radius r moving with speed v in a fluid with viscosity η. When the flow is laminar,
the relationship is simple. It is

F = 6πηrv; (95)

this equation, known as Stokes’ law, is stated here without derivation. Strictly, Stokes’ law
applies only to spherical objects like raindrops falling through air. Note that Stokes’ law does
not apply — regardless of shape — if the flow is turbulent.

If the drag (95) equals the net force accelerating the sphere through
the fluid, then the sphere will move with a constant velocity known as
the terminal velocity or limiting velocity.

Suppose the sphere is falling in a gravitational field (e.g. a raindrop
falling through air) and the sphere has reached terminal velocity. The net
force on the sphere is then

W − U − F = 0,

where U is the upthrust (buoyancy) on the sphere, W the weight of the
sphere, and F the drag due to Stokes’ law. Therefore

U

F

W

v

6πηrv = 4
3
πr3ρsphereg − 4

3
πr3ρfluidg

and

v =
2r2g

9η

(
ρsphere − ρfluid

)
.

11.5.3 Turbulence

In Section 11.2 we discussed the difference between laminar and turbulent flow. Under certain
conditions, the character of the flow pattern in a flowing fluid (or a moving object in a station-
ary fluid) changes. This change could be from laminar to turbulent flow or vice versa. The
criterion for deciding whether the flow is laminar or turbulent is the value of a dimensionless
quantity called the Reynold’s number Re.

When a fluid flows with velocity v past an object with transverse dimension d, the Reynolds
number Re is defined as

Re =
vρd

η
, (96)

where ρ is the density of the fluid and η its viscosity.
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Reynolds criterion

When Re . 2000, flow is laminar.

When Re & 2000, flow is turbulent.

Note that the above are not exact criteria. The transverse dimension d in Equation (96), in
typical cases, is taken to be:

When flow is d

past a sphere sphere diameter
through a pipe pipe diameter
across a wing wing thickness
over a rudder rudder width
between a sliding plate

and a surface
separation of plate

from surface
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A Revision of some elementary mathematics

A.1 Geometry

Circle radius R

R

circumference = 2πR

area = πR2

Sphere radius R

R

area = 4πR2

volume = 4
3
πR3

Cylinder length ℓ and radius R

ℓ

R surface area = 2πRℓ+ 2πR2

volume = πR2ℓ

Right-angled triangle ABC

a

b

c

A

B

C

∠A = 90° − ∠B

c2 = a2 + b2 (Pythagoras’ theorem)

area = 1
2
ab

Triangle

a

b

c
h

A

B

C

a

b

c
h

A

B

C

∠A+ ∠B + ∠C = 180° area = 1
2
base× height
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A.2 Trigonometry

Definitions

sin θ =
opposite

hypotenuse
=

y

r

cos θ =
adjacent

hypotenuse
=

x

r

tan θ =
opposite

adjacent
=

y

x

y

x

r y

x
θ

Identities

sin(90° − θ) = cos θ sin 2θ = 2 sin θ cos θ sin(θ + φ) = sin θ cosφ+ cos θ sinφ
cos(90° − θ) = sin θ cos 2θ = cos2 θ − sin2 θ cos(θ + φ) = cos θ cosφ− sin θ sinφ

tan θ =
sin θ

cos θ
sin2 θ + cos2 θ = 1

Rules for triangles

sine rule:
sinA

a
=

sinB

b
=

sinC

c

cosine rule: a2 = b2 + c2 − 2bc cosA

b2 = c2 + a2 − 2ca cosB

c2 = a2 + b2 − 2ab cosC

a

b

c

A

B

C

Quadratic formula

Suppose ax2 + bx + c = 0 where a, b and c are constants independent of the variable x, then
the roots are

x =
−b±

√
b2 − 4ac

2a

Exponents

1

yn
= y−n ynym = ym+n

yn

ym
= yn−m

ynzn = (yz)n (yn)m = ynm

Calculus

derivatives anti-derivatives

d

dx
xn = nxn−1

∫
xndx =

xn+1

n+ 1
d

dx
(sin ax) = a cos ax

∫
sin ax dx = −

1

a
cos ax

d

dx
(cos ax) = −a sin ax

∫
cos ax dx =

1

a
sin ax
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TUTORIAL QUESTIONS

Unless otherwise stated in the question, take the acceleration due to gravity as g = 9.8m s−2

and the universal gravitational constant G = 6.67× 10−11 Nm2 kg−2.

Basic concepts

A1 Consider the vectors A and B shown in the diagram
alongside. Using the head-to-tail method of vector ad-
dition, draw a scale diagram to find the magnitude and
direction of the vectors
(a) A+B, and
(b) A−B.

Use a scale of 1 cm ≡ 1 unit.

4 units

6 units

120°

A

B

north

A2 (a) Using trigonometry, resolve the vectors F1 and
F2 shown opposite into their x and y compo-
nents.

(b) Hence find (i) F1 + F2, and (ii) F1 − F2.

y

x

20°

30°

F1 = 12N

F2 = 17N

A3 A horizontal force F1 is applied to an object on an
inclined plane as shown.
(a) Resolve F1 into components parallel and perpen-

dicular to the plane.
(b) Repeat (a) for a force F2 = −F1.
(c) How do (i) the parallel components of F1 and F2

compare, and (ii) the perpendicular components
of F1 and F2 compare? θ

F1

A4 A particle with weight W = 2 newtons lies on a plane
inclined at an angle of 30° to the horizontal. Carte-
sian axes have been oriented with the x axis parallel
to the plane as shown. Resolve W into its x and y
components. 30°

b

W

x
y

A5 An aeroplane pilot sets a compass course due west and maintains an air speed of
240 kmh−1. After flying for half an hour, he finds himself over a town that is 150 km
west and 40 km south of his starting point.
(a) Find the wind velocity, in magnitude and direction.
(b) If the wind velocity were 120 kmh−1 due south, in what direction should the pilot

set his course in order to travel due west? Take the same air speed of 240 kmh−1.

Equations of motion

B1 Compare your average speed in the following two cases:
(a) You walk 120m at a speed of 1m s−1 and then run 120m at a speed of 3m s−1 along

a straight track.
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(b) You walk for 1 minute at a speed of 1m s−1 and then run for 1 minute at a speed
of 3m s−1 along a straight track.

B2 A tennis ball is dropped onto the floor from a height of 4.0m. It rebounds to a height
of 3.0m. If the ball was in contact with the floor for 0.010 s, calculate its average
acceleration during contact.

B3 A train moving between two stations 1100m apart accelerates uniformly from rest for
40 s, and then moves at constant speed until the brakes are applied resulting in a constant
deceleration. If it comes to rest after 30 s and the whole journey takes 90 s, find the
maximum speed, the acceleration, and the retardation.

B4 A moving car passes three points A, B and C which are 150m apart. The time taken
to move from A to B was 10 s, and the time taken to move from B to C was 5 s. If the
motion of the car was uniformly accelerated, how fast was the car moving as it passed
points A, B and C?

B5 A stone is projected vertically upward with a speed of 14m s−1 from a tower 100m high.
Find the maximum height attained and the speed with which it strikes the ground.

B6 A ball rolls off the edge of a tabletop 1m above the floor, and strikes the floor at a point
1.5m horizontally from the edge of the table.
(a) Find the time of flight.
(b) Find the initial velocity.
(c) Find the magnitude and direction of the velocity of the ball just before it strikes

the floor.

B7 A football is kicked with an initial speed of 22m s−1 at an angle θ above level ground. The
ball reaches a maximum height H; and its range is R (maximum horizontal distance).
(a) Calculate the values of H and R for

(i) θ = 20°; (ii) θ = 45°; (iii) θ = 70°.
(b) Sketch these three trajectories roughly to scale.
(c) Use your sketch and a sensible guess to answer the following question: For what

value of θ is R a maximum?

B8 A man stands on the roof of a building and throws a ball upwards with a velocity of
magnitude 60m s−1 at and angle of 33.0° above the horizontal. The ball leaves his hand
at a point 30m above the ground. Calculate
(a) the maximum height above the roof reached by the ball;
(b) the magnitude of the velocity of the ball just before it strikes the ground;
(c) the horizontal distance from the base of the building to the point where the ball

strikes the ground.

B9 An object is projected downward at an angle of 30° to the horizontal, with an initial speed
of 40m s−1, from the top of a tower 150m high. What will be the vertical component of
its velocity when it strikes the ground? In what time will it strike the ground? How far
from the tower will it strike the ground? At what angle with the horizontal will it strike?

B10 Before leaving the ground, an aircraft moves with constant acceleration and travels
720m in 12 s from rest. It then leaves the ground. Determine (a) the acceleration,
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(b) the speed with which it leaves the ground, (c) the distance covered during the first
second and during the twelfth second.

B11 A car driver travelling at 72 kmh−1 suddenly sees a fallen tree on the road 40m ahead.
He puts on the brakes to stop before he hits the tree. To put on the brakes requires
0.75 s (the reaction time of the driver), after which the retardation is 8m s−2. What is
the total stopping time? How far does he travel before the brakes are applied? What is
his total stopping distance? If he subsequently travels at twice the speed, how far ahead
should he be able to see clearly for safety? (Assume the deceleration is the same.)

B12 A stone is dropped and then 1.0 s later, from a point 5.0m lower, a second stone is
dropped. When will the two stones be 15m apart?

B13 Four-tenths of a second after bouncing on a trampoline, a gymnast is moving upward
with a speed of 6.0m s−1. To what height above the trampoline does the gymnast rise
before falling back down?

Applications Newton’s second law

C1 A 560N physics student stands on a bathroom scale in an elevator. As the elevator
starts moving, the scale reads 800N.
(a) Find the acceleration of the elevator (magnitude and direction).
(b) What is the acceleration if the scale reads 450N?
(c) If the scale reads zero, should the student worry? Explain.

C2 A car is towing a trailer. The driver starts from rest and accelerates to a speed of
11m s−1 in a time of 28 s. The mass of the trailer is 410 kg. What is the tension in the
hitch that connects the trailer to the car?

C3 A car of mass 1380 kg is moving due east with an initial speed of 27.0m s−1. After 8.00 s
the car has slowed down to 17.0m s−1. Find the magnitude and direction of the net force
that produces the deceleration.

C4 In the diagram, the weight of the block on the
table is 111N and that of the hanging block is
258N. Ignoring all frictional effects and assuming
the pulley to be massless, find (a) the acceleration
of the two blocks and (b) the tension in the cord.

111N

258N

C5 Two objects A and B whose mass is 8.0 kg each are connected by a cord passing over
a frictionless pulley. If 0.40 kg is shifted from B to A, (a) what acceleration results and
(b) what is the tension in the cord?

C6 A rescue helicopter is lifting a man (W = 822N) from a capsized boat by means of a ca-
ble and harness. (a) What is the man’s mass? (b) What is the tension in the cable when
the man is given an initial upward acceleration of 1.10m s−2 ? (c) What is the tension
during the remainder of the rescue when he is pulled upward at a constant velocity?
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C7 A lunar landing craft (mass m = 11 400 kg) is about to touch down on the surface of the
moon, where the acceleration due to gravity is 1.6m s−2. At an altitude of 165m the
craft’s downward velocity is 18.0m s−1. To slow down the craft, a retrorocket is fired to
provide an upward thrust. Assuming the descent is vertical, find the magnitude of the
thrust needed to reduce the velocity to zero at the instant when the craft touches the
lunar surface.

C8 The 5 kg block shown in the diagram opposite is being
pulled to the right at a constant speed by a force F
which makes an angle of 30° to the horizontal. Given
µk = 0.6, calculate the magnitude of F.

F

30°5 kg

C9 Three identical blocks A, B and C each have massm. Blocks A and B rest on a horizontal
surface. The coefficient of kinetic friction between the blocks and the surface is µk. A
is attached to B by means of a cord, and B is attached to C by means of a cord passing
over a frictionless pulley. Show that (a) the acceleration of the system is a = 1

3
g(1−2µk),

(b) the tensions are T1 =
1
3
mg(1 + µk) and T2 =

2
3
mg(1 + µk).

C10 An object weighing 500N slides down a hill at constant velocity, the angle with the
horizontal being 30°. Find (a) the downhill component of the weight, (b) the friction
force opposing the motion, (c) the component of the weight normal to the surface, (d)
the coefficient of kinetic friction.

C11 A playground slide of constant slope is 4.5m in length. The upper and lower ends are
3.0m and 0.5m vertically above the ground, respectively.
(a) If a boy starts sliding from rest at the upper end of the slide, find his velocity at

the lower end assuming the coefficient of sliding friction to be constant at 0.25.
(b) What percentage is the final velocity of that which would have been obtained if the

friction were negligible?
(c) For what angle of slope would the boy slide down without acceleration (given a

starting push)?

C12 A block rests on an inclined plane that makes an angle θ with the horizontal. The
coefficient of sliding friction is 0.50, and the coefficient of static friction is 0.75.
(a) As the angle θ is increased, find the smallest angle at which the block starts to slip.
(b) At this angle, find the acceleration once the block has begun to move.
(c) How much time is required for the block to slip 20m along the inclined plane?

C13 A 20 kg box is pushed up a rough sloping ramp, inclined at 30° to the horizontal, having
a coefficient of kinetic friction of 0.3, by a horizontal force of magnitude 300N.
(a) What is the normal force?
(b) What is the frictional force?
(c) What is the acceleration of the block?
(d) If the force is reduced until the acceleration becomes zero, what is the magnitude

of the force?

C14 A block weighing 100N is placed on an inclined plane of slope angle 30° and is connected
to a second hanging block of weight W by a cord passing over a small frictionless pulley,
as in the figure below. The coefficient of static friction is 0.40 and the coefficient of
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sliding friction is 0.30.
(a) Find the weight W for which the 100N block

moves up the plane at constant speed.
(b) Find the weight W for which it moves down the

plane at constant speed.
(c) For what range of values of W will the block

remain at rest?
(d) Does the answer to (c) contradict the answers for

(a) and (b)?

W

30°

C15 A motorcycle goes over the top of a hill. The road may be considered to be an arc
of a circle in a vertical plane of radius 88.2m. With what maximum speed may the
motorcycle travel without leaving the road tangentially?

C16 In Bohr’s model of the hydrogen atom, an electron (mass 9.11× 10−31 kg) revolves
around a proton in a circular orbit of radius 5.28× 10−11mwith a speed of 2.18× 106ms−1.
Calculate
(a) the period of the electron (i.e. the time taken to complete one revolution).
(b) the acceleration of the electron, and
(c) the centripital force on the electron. What supplies this force?

C17 A car travels without skidding at a speed of 26m s−1 around a curve of radius 92m on
a horizontal road. Calculate the smallest possible value of µs between the tyres and the
road.

C18 A 0.25 kg mass moves in a vertical circle at the end of a string of length 30 cm. Calculate
the tension in the string at the following points: (a) at the top of the circle where the
speed is 3.00m s−1, (b) at the bottom of the circle where the speed is 4.56m s−1, and (c)
halfway up, where the speed is 3.86m s−1.

C19 At what angle should a curve of radius 150m be banked so cars travel safely at 25m s−1

without relying on friction?

Gravitation

D1 The mass of the moon is about one eighty-first, and its radius on-fourth, that of the
earth. Calculate the acceleration due to gravity on the surface of the moon.

D2 A hypothetical planet has a radius of 500 km and an acceleration due to gravity of
3.0m s−1 at its surface. What is the gravitational acceleration 100 km above its surface?
Calculate the mass of the planet.

D3 A satellite orbit has radius 6500 km. If the earth’s mass is 5.98× 1024 kg, calculate the
orbital speed of the satellite. Calculate the period of the satellite. Is this satellite in a
geosynchronous orbit?

D4 A uniform sphere with mass 0.200 kg is 6.0m to the left of a second uniform sphere with
mass 0.300 kg. Where, in addition to infinitely far away, is the resultant gravitational
field due to these masses equal to zero?

73



D5 At what height above the earth’s surface will the acceleration due to gravity be 4.90m s−2?
The radius of the earth is 6370 km.

Hydrostatics

E1 Numerous jewellery items of silver are melted down and cast into a solid circular disk
that is 0.0200m thick. The total mass of the jewellery is 10.0 kg. Find the radius of the
disk. (The density of silver is 1.05× 104 kgm−3.)

E2 An irregularly shaped chunk of concrete has a hollow spherical cavity inside. The mass
of the chunk is 33 kg, and the volume enclosed by the outside surface of the chunk
is 0.025m3. What is the radius of the spherical cavity? (The density of concrete is
2.2× 103 kgm−3)

E3 At times during a walking motion, nearly the entire weight of the body acts on one heel.
(a) Calculate the pressure exerted by a woman of mass 55 kg if the heel is circular, with
radius of 6.0mm. (b) How does this compare with the pressure under an elephant’s
foot? Assume a fully grown elephant of weight 37 000N standing evenly on all four feet.
Treat the feet as circles of diameter 40 cm.

E4 If a barometer reads 76 cmHg on the beach at Durban, what will it read in Pietermar-
itzburg which is 600m above sea level, taking the mean density of air as 1.20 kgm−3 and
the density of mercury as 13 600 kgm−3?

E5 How high can water rise in a pipe if a pressure gauge at the bottom of the pipe shows
the excess pressure is 3× 105 Pa? (Take the density of water as 1000 kgm−3.)

E6 The deep end of a swimming pool has a depth of 2.00m. The atmospheric pressure
above the pool is 1.01× 105 Pa. What is the pressure at the bottom of the pool?

E7 A 1.00m tall container is filled to the brim, part way with mercury and the rest of
the way with water. The container is open to the atmosphere. What must be the
depth of each layer, so the absolute pressure on the bottom of the container is twice the
atmospheric pressure P0? (take P0 = 76 cmHg.)

E8 A U-tube is partly filled with equal volumes
of water and mercury (which do not mix). If
each liquid fills a 20 cm long section of the tube,
what is the difference in levels, h, of the two
upper surfaces? 20

cm h

H
2
O

Hg

E9 A glass tube in the shape of an upside-down “U” has its ends dipping into beakers
containing oil and water respectively. When some air is sucked out of the tube the
liquids rise to different levels. The height of the surface of oil in the tube above that in
the beaker is 35.5 cm. The corresponding reading for water is 28.4 cm. Find the relative
density of the oil. (Explain your working carefully.)
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E10 A copper ball (relative density 8.9) has a mass of 267 g. Calculate (a) its density (b) its
weight and (c) the upthrust on it when suspended in water.

E11 If the RD of ice is 0.92 and that of sea water is 1.03, calculate the total volume of a
mass of ice that floats with 1000m3 above the water.

E12 A uniform wooden cylinder has a density of 800 kgm−3,
a height of 8.0 cm and a diameter of 10.0 cm. A cylin-
drical hole of diameter 2.0 cm is drilled part-way up
into the cylinder through its base (see diagram). The
hole is then filled with lead (density 1.1× 104 kgm−3).
Calculate the necessary length ℓ of the lead-filled hole
if the cylinder is just to submerge when placed in
water. 2.0 cm

10.0 cm

8.0 cm

ℓ

E13 A thin-walled, hard, plastic ball (like a ping-pong ball) has a diameter of 3.8 cm and an
average density of 8 kgm−3. Calculate the force required to hold it completely submerged
under water.

E14 A cylindrical block of wood 6 cm in height has a
density of 850 kgm−3. It is floating in water. Oil
(ρoil = 800 kgm−3) is now poured on top of the water,
completely submergin the block as shown. Calculate
the depth x to which the block is immersed in water.

x

6− x

water

oil

wood

E15 One kilogram of glass (ρ = 2600 kgm−3) is shaped into a hollow spherical shell that just
floats in water. Calculate the inner and outer radii of the shell.

Work, energy, power, impulse and momentum

F1 The diagram alongside shows a 5 kg block at rest on a
frictionless surface. A force F of magnitude 60N acting
at an angle of 30° to the horizontal displaces the block
3m to the right. Calculate the work done by F. Hence
(use the work–energy theorem) find the final velocity
of the block.

F

30°5 kg

F2 A brick slides on level ground with an initial speed of 28m s−1. The coefficient of sliding
friction between the brick and the ground is 0.25. Use the work–energy theorem to
calculate the distance and time the brick will travel before coming to rest.

F3 A 1500 kg car is coasting down a 30° hill. At a time when the car’s speed is 12m s−1

the driver applies the brakes. What force (parallel to the road) must be generated by
application of the brakes if the car is to stop after covering 30m

F4 Calculate the power developed by an 80 kg student who, in 10 seconds runs up stairs
that have a vertical height of 5m.
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F5 Th output power of an electric motor is 60 kW. At what constant speed can it raise and
elevator weighing 1600N?

F6 A pump is required to lift 800 kg of water per minute from a well 10m deep and eject it
with a speed of 20m s−1. Calculate the power of the pump required.

F7 In the system shown opposite, blocks X and Y have
equal mass. Use the work–energy theorem to cal-
culate, for the conditions stated in (a) and (b) below,
the speed of block X after it has travelled 3m along
the inclined plane. Assume that (a) the system is fric-
tionless and that block X starts from rest, (b) there
is friction between block X and the plane. Motion is
induced by giving the system a small initial displace-
ment. Take µk = 0.3.

X
Y

30°

F8 A particle (mass m) slides without friction around a
loop-the-loop as shown opposite.
(a) Suppose R = 1.5m and h = 7m, calculate the

speed of the particle at A.
(b) Calculate the normal force on the particle at A

if m = 5 g.

R

b

b
A

h

F9 Refer to the figure in Question F8 above. At what height h (expressed in terms of R)
will the particle just fail to “loop-the-loop”?

F10 A 5 kg block is moving at 6.00m s−1 along a frictionless
horizontal surface towards a spring with force constant
k = 500Nm−1 that is attached to a wall. (See the
diagram alongside.) Find the maximum distance the
spring will be compressed. Assume that the spring has
negligible mass.

k = 500Nm−1

5.0 kg

v = 6.0m s−1

F11 A rifle bullet of mass 10 g strikes and embeds itself
in a block of mass 990 g which rests on a horizontal
frictionless surface and is attached to a coil spring, as
shown in the figure. The impact compresses the spring
10 cm. Calibration of the spring shows that a force of
1.0N is required to compress the spring 1 cm.

v

10 cm

(a) Find the maximum potential energy of the spring.
(b) Find the velocity of the block just after impact.
(c) What was the initial velocity of the bullet?

F12 A golf ball of mass 0.10 kg initially at rest is given a speed of 50m s−1 when it is struck
by a club. If the club and ball are in contact for 2ms, what average force acted on the
ball?

F13 A 150 g cricket ball is hit by a bat. Just before impact, the ball is travelling horizontally
towards the right at 40m s−1 and it leaves the bat travelling to the left at an angle of
30° above the horizontal with a speed of 60m s−1. If the bat and ball are in contact for
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5× 10−3 s, find the horizontal and vertical components of the average force exerted by
the bat.

F14 A bullet of mass 2 g, travelling in a horizontal direction with a velocity of 500m s−1, is
fired into a wooden block of mass 1 kg, initially at rest on a level surface. The bullet
passes through the block and emerges with its velocity reduced to 100m s−1. The block
slides a distance of 20 cm along the surface from its initila position. Calculate
(a) the speed of the block at the instant after the bullet passed through it;
(b) the coefficient of sliding friction between block and surface.

F15 A 7 g bullet fired into a 2 kg block of soft wood suspended by a long rope, and the bullet
remains embedded in the block. The impact causes the centre of gravity of the block to
rise 10 cm. Find the initial velocity of the bullet.

F16 A man standing on level ice pushes an object so that it slides away from him. Its mass
is 5 kg and the initial speed is 20m s−1. The man has a mass of 80 kg. If the ice has a
zero friction coefficient, what happens to the man?

F17 Two blocks of mass 300 g and 200 g are moving toward each other along a horizontal
frictionless surface with velocities of 50m s−1 and 100m s−1, respectively.
(a) If the blocks collide and stick together, find their final velocity.
(b) Find the liss of kinetic energy during the collision.
(c) Find the final velocity of each block if the collision is completely elastic.

F18 Two identical balls A and B are rolling towards each other with speeds of 7.0m s−1

and 4.0m s−1, respectively. They undergo a head-on elastic collision. Determine their
velocities (magnitude and direction) after the collision.

F19 A particle A of mass 1.0× 10−27 kg and velocity 5.0× 107ms−1 undergoes a glancing
collision with an identical particle B initially at rest. After the collision, the new speed
of A is 4.0× 107ms−1. Assuming no loss of kinetic energy in the collision (i.e. that the
collision is elastic) calculate (a) the angle between the directions of A and B after the
collision, (b) the momentum of B after the collision, (c) the directions of A and B after
the collision relative to the original direction of A.

Static equilibrium

G1 Find the tension in each of the cords shown in the figure below. The weight of the
suspended body is 200N.

A AB

C C

200N

37°37°

53°

A

B

C

200N

45°

60°

A
B

C

200N

45°

A B

C

200N

45°30°

(a) (b) (c) (d)
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G2 A uniform rod 1m long and weighing 30N is supported in a horizontal position on a
fulcrum with weights of 40N and 50N suspended from its ends. Calculate the position
of the fulcrum.

G3 A uniform metre rule weighing 205N is supported horizontally by two vertical threads
attached to the 40 cm and 70 cm marks respectively. A weight of 100N is fixed to the
rule at the zero end and 300N at the 100 cm end. Calculate the tension in each thread.
If the loaded metre rule is supported by a single thread, where must this be attached in
order that the stick shall be horizontal?

G4 A uniform rod of mass 200 kg is hinged at it’s lower end. A horizontal cable fixed to its
upper end keeps the rod at an angle of 30° to the vertical. Calculate (a) the tension in
the cable (b) the horizontal and vertical components of the reaction at the hinge, and
hence the resultant magnitude and direction of this reaction.

G5 A uniform ladder 10m long rests against a vertical frictionless wall with its lower end
6m from the wall. The ladder weighs 400N. The coefficient of static friction between
the foot of the ladder and the ground is 0.40. A man weighing 800N climbs slowly up
the ladder.
(a) What is the maximum frictional force that the ground can exert on the ladder at

its lower end?
(b) What is the actual frictional force when the man has climbed 3m along the ladder?
(c) How far along the ladder can the man climb before the ladder starts to slip?

G6 An 8.00m uniform ladder of weight 355N leans at an angle of 40° to the vertical against
a smooth vertical wall. A firefighter of weight 875N stands 6.30m from the bottom of
the ladder. Calculate the (normal) reaction of the wall on the ladder, and the horizontal
and vertical components of the reaction of the ground on the ladder.

Rotation of rigid bodies

H1 A wheel starts from rest and rotates with constant angular acceleration to an angular
velocity of 12 rad s−1 in a time of 3 s. Calculate (a) the angular acceleration of the wheel
and (b) the angle in radians through which it rotates in this time.

H2 A wheel accelerates so that its angular speed increases uniformly from 150 rad s−1 to
580 rad s−1 in 16 revolutions. Calculate its angular acceleration.

H3 A circular pulley, 4m in diameter, is mounted so that it can rotate about an axis passing
through its centre. One end of a cord which is wound around the pulley is being pulled
off with an acceleration of 6m s−2. Calculate
(a) the angular acceleration of the pulley,
(b) the angular speed of the pulley after 10 s, assuming the system started from rest,

and
(c) the linear speed of a point on the circumference of the pulley after 10 s.

H4 A wheel undergoes uniform angular acceleration α from rest. It passes through an
angular speed of ω0 and describes a further 800 revolutions in 40 seconds until it reaches
an angular speed of 25 revolutions per second.
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(a) Calculate (i) ω0 (ii) α. Determine also (iii) the total number of revolutions described
and (iv) the total time taken.

(b) The wheel is now subjected to a braking torque, and experiences an angular retar-

dation of
π

3
rad s−2. Calculate its angular speed after the next 675 revolutions.

H5 Two small spheres, each of mass 12 g, are attached to the ends of a very light, rigid rod
80 cm in length. The system rotates at 25 rad s−1 about an axis perpendicular to the
rod, and passing through its centre. Calculate
(a) the moment of inertia of the system about its axis, and
(b) the rotational kinetic energy.

H6 A thin steel ring 0.5m in diameter and mass 6 kg starts from rest at the top of a plane,
4m long, and inclined at 30° to the horizontal. Suppose the ring rolls down the plane
without slipping. At the instant the ring reaches the bottom of the plane, calculate
(a) the total energy,
(b) the linear velocity of the ring’s centre of gravity,
(c) the angular velocity,
(d) the linear acceleration of the centre of gravity, and
(e) the angular acceleration.

H7 A 1.0 kg (solid) sphere rolling on a horizontal surface at 20m s−1 comes to the base of
an inclined plane which makes an angle of 30° with the horizontal
(a) Calculate the total kinetic energy of the ball when it is at the base of the incline.
(b) How far up the incline will the ball roll?

H8 A wheel of mass M = 50 kg and diameter 2R = 80 cm rotates about its axis at
2000 revmin−1. A braking force of 50N is applied tangentially to the rim of the wheel.
(a) Calculate the moment of inertia of the wheel about its axis

(
I = 1

2
MR2

)
.

(b) Calculate the applied torque.
(c) Using the concept of angular impulse, calculate the angular velocity of the wheel

in revolutions per minute, 40 s after the braking force is applied.

H9 A child pushes with a force of 100N tangentially to the rim of a playground merry-
go-round for 3.00 s. The radius of the merry-go-round is 1.50m, and its moment of
inertia about its axis is 114 kgm2. The initial angular speed of the merry-go-round is
0.500 rad s−1.
(a) Calculate (i) the applied torque and (ii) the final angular speed.
(b) The child now gets the merry-go-round up to its final speed of 4.45 rad s−1. Then,

from a standing position, the 40.0 kg child jumps onto the moving merry-go-round
and holds to its rim at a radius of 1.50m. Calculate the new angular speed.

H10 A string is wound round the horizontal axle, radius 1.50 cm, of a fly wheel and a mass
of 200 g is attached to the free end of the string. The system moves from rest until the
mass has fallen through 45 cm, when the mass and string are released and the wheel

continues to turn at a rate of
10

π
revolutions per second. Neglecting friction, calculate

(a) the velocity and (b) the acceleration of the mass at the moment of release. Determine
also (c) the tension in the string while the mass was descending and (d) the moment of
inertia of the flywheel about its axis.
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H11 The pulley system in the diagram alongside has a
moment of inertia 4.0 kgm2. Block A has a mass
30 kg and block B has a mass 70 kg. Find the angular
acceleration α of the pulley and the tensions T1 and
T2 in the cords when the blocks are released. Assume
R = 0.75m.

α

70 kg30 kg

R

b

T2T1

A B

Simple harmonic motion

J1 A vibrating object moves through four complete cycles in 1.00 s. Calculate the frequency
f , the angular frequency ω and the period T of the motion.

J2 An object moving with SHM has an acceleration of 0.9m s−2 when it is 0.40m from its
equilibrium position. Calculate the period of the motion.

J3 A body is vibrating with SHM of amplitude 0.20m and period 0.50 s. Calculate the
maximum values of the acceleration and velocity, and the values of acceleration and
velocity when the body is 0.10m away from its force centre. How long does the body
take to move from the force centre to a point 0.15m away?

J4 An object of mass 350 g attached to the end of a spring executes SHM with a period of
1.00 s. The maximum value of the acceleration is 30m s−2. Calculate
(a) the spring constant,
(b) the amplitude of the motion,
(c) the maximum velocity,
(d) the values of the acceleration and velocity when the particle is 0.50m away from

its central position, and
(e) the time taken to move from the central position to a point 0.50m away.

J5 A body moving with SHM along the x axis has velocities of 20m s−1 and 25m s−1 at
distances of 10m and 8.0m respectively, from its centre of attraction. Calculate the
amplitude of the motion, the period of the motion and the acceleration at a distance of
1.0m from the centre.

J6 A 0.50 kg object moves with SHM on the end of a horizontal spring with a force constant
k = 300Nm−1. When the object is 0.012m from its equilibrium position, it is observed
to have a speed of 0.30m s−1. Neglecting frictional losses, calculate
(a) the total energy of the system,
(b) the amplitude of the motion, and
(c) the maximum speed attained by the object during its motion.

Elasticity

K1 A mass of 170 g is hung on a steel ribbon 750mm long, 1.9 cm wide and 0.10mm thick.
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(a) Calculate the stress in the ribbon.
(b) If Young’s modulus for steel is 2.2× 1010 Pa, what is the strain in the ribbon?
(c) How much does the ribbon stretch?

K2 A mass of 75 kg is suspended from a steel wire 1.0mm in diameter.
(a) What is the stress in the wire?
(b) If the wire stretches by 3.0mm, how long is the wire?

(Young’s modulus for steel is 2.0× 1010 Pa.)

K3 A mass of 10 kg is suspended by a plastic tube of inner diameter 1.8 cm and outer
diameter 2.0 cm.
(a) Calculate the stress in the tube.
(b) The tube is 1.0m long before the mass is attached to it. If Young’s modulus is

109 Pa, what is the length of the stretched tube?

K4 A straight piece of copper tube 1.0m long has an internal diameter of 2.0 cm and a wall
thickness of 1.0mm. It is closed at each end. A gas is pumped into the tube until the
pressure inside exceeds that outside by 1× 107 Pa. What is the increase in length of the
tube? (Hint: Calculate the force the gas exerts on the plugged ends.) Young’s modulus
for copper is 1.25× 1010 Pa.

K5 An aircraft of mass 103 kg lands on an aircraft carrier and is decelerated uniformly to
rest in 50m by a steel cable lying along the direction of motion. If the landing speed
is 50m s−1 and Young’s modulus for steel is 2.0× 1010 Pa, determine the radius of the
smallest cable that will not break (breaking strain of steel is 1.0× 10−3).

K6 A child of mass 30 kg is able to swing through an arc of 180° on a swing suspended by
two ropes. If the ultimate tensile stress for the rope material is 108 Pa, calculate the
diameter of the ropes which would provide a safety factor of 5.

Fluids dynamics

L1 Determine whether the flow of water at 3.0m s−1 over a piece of wood of length 30 cm is
laminar or not (viscosity of water ≈ 10−3 Pa s). At what speed does the transition from
laminar to turbulent flow take place?

L2 A water drop of radius 0.50mm falls with a velocity of 5.0m s−1. Is the air flow past the
drop laminar? (Density of air = 1.0 kgm−3, viscosity of air = 1.8× 10−5 Pa s.) Is the
droplet accelerating or not? Can the flow around a falling droplet of this radius ever be
turbulent?

L3 Assume that the viscous drag on a sphere moving through a liquid depends on (1) the
radius of the sphere, (2) the viscosity of the liquid and (3) the velocity of the sphere.
Then use the method of dimensional analysis to show that the drag is proportional to
the product rηv and hence derive an equation for the limiting velocity of the sphere.

L4 A ball bearing 2.0mm in diameter is used to determine the viscosity of oil. The ball,
falling at its terminal velocity through the oil, is timed between two levels 0.5m apart
at 3.9 s. If the density of steel is 7.8× 103 kgm−3 and that of oil is 8.0× 102 kgm−3,
determine the viscosity of the oil. What is the Reynolds number for the fluid flow?
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L5 A bubble of air rises through water. At what bubble radius is the limiting velocity such
that the flow of water past the bubble is about to become turbulent? (Viscosity of water =
10−3 Pa s, density of air = 1.0 kgm−3, density of water = 1000 kgm−3.)

L6 A “suspension” is formed by shaking up spherical particles of radius 5.0× 10−7m and
density 4.0× 103 kgm−3 in water. If the depth of water is 50mm and the particles are
initially distributed uniformly throughout the water, calculate the percentage of particles
still in suspension one hour after the mixture has been left to stand. (Viscosity of water =
10−3 Pa s.)

L7 An oil drop of density 900 kgm−3 reaches a terminal speed of 0.20m s−1 when falling
through a gas of viscosity 1.5× 10−5 Pa s. What is the radius of the drop? What
assumptions do you make?

L8 Water flows out of a container through a horizontal pipe of diameter 3.0mm and length
60 cm. A constant water level 1.0 cm above the pipe is maintained in the container.
(Viscosity of water = 10−3 Pa s.) How fast is the water in the tube flowing? How long
would the stream emerging from the pipe take to fill a 1ℓ container?

L9 Calculate the pressure required to push 6.0× 102mm3 of fluid per second into a tube
of internal diameter 0.40mm and length 3.0mm. (Viscosity of fluid = 80Pa s.) Express
your answer in atmospheres.

L10 Water flows along a uniform horizontal tube 1.5m long and radius 1.0mm. A pressure
difference of 5.3 kPa is maintained between the ends. The viscosity of water is 10−3 Pa s.
Calculate (a) the flow rate in m3 s−1, (b) the average water speed.

L11 A horizontal pipe of diameter 3.0 cm has a constriction of diameter 2.0 cm. The flow
rate of water in the pipe is 2.0 ℓ s−1. What is the velocity of the water in the pipe and
at the constriction? What is the pressure drop at the constriction? (Density of water =
1000 kgm−3.)

L12 Water flows out of a container through a hole of diameter 1.0 cm at a depth of 50 cm
below the surface. What volume of water must be supplied per minute to maintain the
water level in the container?

L13 Water in a large container has a depth of y0. There is a hole in the vertical side of the
container at a depth y < y0. The jet of water which pours out of the hole hits the level
ground on which the container rests at a distance d away from the hole.

(a) Show that d = 2
√

(y0 − y)y.

(b) For what value of y is d a maximum? (Determine this graphically, if need be.)

(c) What is the y corresponding to dmax for a container 0.50m deep?

L14 An aircraft wing has a weight of 2.5× 103N and an area of 6.0m2. The air flows over
the top surface at 60m s−1 and over the bottom surface at 50m s−1. The air density =
1.2 kgm−3. Calculate the upward force on the wing.
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acceleration, 9
angular, 50
average, 9
due to gravity, 14
instantaneous, 10
uniform, 10

Archimedes’ Principle, 37

Barometer, 35
Fortin, 36

centre of gravity, 47
collision

elastic, 45
inelastic, 46

deceleration, 11
Density, 32
displacement, 8
dynamics, 18

energy, 38
kinetic, 39
potential, 40
work-energy theorem, 39

equilibrium, 27

force
centripetal, 31
friction, 25
gravitation, 22
net, 19
normal, 23
tension, 26

frame of reference, 8
free-body diagram, 20
friction

coefficient of static, 25
kinetic, 25
rolling, 25
static, 25

geostationary orbit, 32

graph
position-time, 10
velocity–time, 11

gravity
universal constant, 22

Hooke’s law, 41

impulse, 44
inertia, 19

moment of, 51

kinematics, 8

Manometer, 37
mass, 18, 19

of earth, 22
momentum, 44

Newton’s laws of motion, 19
first law, 19
second law, 19
third law, 21

power, 38, 43
prefix

conversion example, 3
Pressure, 34
projectile, 16

range, 17

Relative density, 33

satellites, 31
scalar, 3
Specific gravity, 33
speed, 9

angular, 50
average, 9
uniform, 9

torque, 47

units, 2
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conversion example, 3

vector, 3
addition, 6
addition, by construction, 3
components, 5
parallelogram of, 7
resolving, 5

velocity, 9
angular, 50
average, 9
instantaneous, 9
terminal, 25

weight, 22
work, 38
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